Lacewing-specific Universal Single Copy Orthologs designed towards resolution of backbone phylogeny of Neuropterida

IF 4.7 1区 农林科学 Q1 ENTOMOLOGY
Yan Lai, Shiyu Du, Hongyu Li, Yuchen Zheng, Adrian Ardila-Camacho, Ulrike Aspöck, Horst Aspöck, Ding Yang, Feng Zhang, Xingyue Liu
{"title":"Lacewing-specific Universal Single Copy Orthologs designed towards resolution of backbone phylogeny of Neuropterida","authors":"Yan Lai,&nbsp;Shiyu Du,&nbsp;Hongyu Li,&nbsp;Yuchen Zheng,&nbsp;Adrian Ardila-Camacho,&nbsp;Ulrike Aspöck,&nbsp;Horst Aspöck,&nbsp;Ding Yang,&nbsp;Feng Zhang,&nbsp;Xingyue Liu","doi":"10.1111/syen.12657","DOIUrl":null,"url":null,"abstract":"<p>Universal Single Copy Orthologs (USCOs), as a set of markers of nearly universal single-copy genes, show a superiority in phylogenomic inference. Here, we developed a Benchmarking Universal Single Copy Orthologs (BUSCOs) dataset, neuropterida_odb10, tailored for Neuropterida, based on high-quality genome assemblies and transcriptome data, comprising 5438 BUSCOs. A range of 1524–5328 complete and single-copy USCOs could be captured from the genome assemblies and transcriptomes of 104 species of Neuropterida. The reconstruction of a higher-level phylogeny of Neuropterida based on a comprehensive sampling and refined genomic data in reference to neuropterida_odb10 validates the efficiency of this BUSCO dataset for phylogenomic inference. We recovered Psychopsidae as the sister group to Ithonidae, and corroborated the sister group relationship between Sisyridae and Nevrorthidae within Osmyloidea and the sister group relationship between Chrysopidae and Mantispoidea. Furthermore, our findings highlight that focusing on alignments with a higher presence of parsimony-informative sites, rather than on the total number of alignments, can diminish errors in gene tree estimation, a process notably vulnerable to error when using multispecies coalescent methods. The neuropterida_odb10 BUSCO reference dataset holds promise for phylogenetic studies at various hierarchical levels, as well as for comparative genomics and the exploration of species diversity within Neuropterida.</p>","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":"50 2","pages":"309-324"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic Entomology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/syen.12657","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Universal Single Copy Orthologs (USCOs), as a set of markers of nearly universal single-copy genes, show a superiority in phylogenomic inference. Here, we developed a Benchmarking Universal Single Copy Orthologs (BUSCOs) dataset, neuropterida_odb10, tailored for Neuropterida, based on high-quality genome assemblies and transcriptome data, comprising 5438 BUSCOs. A range of 1524–5328 complete and single-copy USCOs could be captured from the genome assemblies and transcriptomes of 104 species of Neuropterida. The reconstruction of a higher-level phylogeny of Neuropterida based on a comprehensive sampling and refined genomic data in reference to neuropterida_odb10 validates the efficiency of this BUSCO dataset for phylogenomic inference. We recovered Psychopsidae as the sister group to Ithonidae, and corroborated the sister group relationship between Sisyridae and Nevrorthidae within Osmyloidea and the sister group relationship between Chrysopidae and Mantispoidea. Furthermore, our findings highlight that focusing on alignments with a higher presence of parsimony-informative sites, rather than on the total number of alignments, can diminish errors in gene tree estimation, a process notably vulnerable to error when using multispecies coalescent methods. The neuropterida_odb10 BUSCO reference dataset holds promise for phylogenetic studies at various hierarchical levels, as well as for comparative genomics and the exploration of species diversity within Neuropterida.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Systematic Entomology
Systematic Entomology 生物-进化生物学
CiteScore
10.50
自引率
8.30%
发文量
49
审稿时长
>12 weeks
期刊介绍: Systematic Entomology publishes original papers on insect systematics, phylogenetics and integrative taxonomy, with a preference for general interest papers of broad biological, evolutionary or zoogeographical relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信