Sex-specific characterization of aortic function and inflammation in a new diet-induced mouse model of metabolic syndrome

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Vivian Tran, Holly Brettle, Henry Diep, Hericka Bruna Figueiredo Galvao, Kerry V. Fanson, Christopher G. Sobey, Grant R. Drummond, Antony Vinh, Maria Jelinic
{"title":"Sex-specific characterization of aortic function and inflammation in a new diet-induced mouse model of metabolic syndrome","authors":"Vivian Tran,&nbsp;Holly Brettle,&nbsp;Henry Diep,&nbsp;Hericka Bruna Figueiredo Galvao,&nbsp;Kerry V. Fanson,&nbsp;Christopher G. Sobey,&nbsp;Grant R. Drummond,&nbsp;Antony Vinh,&nbsp;Maria Jelinic","doi":"10.1096/fj.202401871R","DOIUrl":null,"url":null,"abstract":"<p>Perivascular adipose tissue (PVAT) expansion promotes inflammation and vascular dysfunction in metabolic syndrome (MetS), but the sexual dimorphisms of PVAT are poorly understood. Using a new mouse model of diet-induced MetS, we characterized the aorta and determined the influence of PVAT on vascular function in males and females. Six-week-old C57BL/6 mice were fed either a high-fat diet (43% kcal in food) with high sugar and salt in their drinking water (10% high fructose corn syrup and 0.9% NaCl; HFSS), or a normal chow diet (NCD) for 10 weeks. The aorta was characterized at endpoint using pin myography, flow cytometry, bulk RNA-sequencing, GSEA analysis, and histology. Compared to NCD-fed mice, HFSS-fed mice displayed higher weight gain, fasting blood glucose, systolic blood pressure, aortic fibrosis, and perivascular adipocyte cross-sectional area, regardless of sex (<i>p</i> &lt; .05). Circulating adiponectin levels were also higher in HFSS-fed males compared to NCD males. PVAT enhanced U46619-mediated contraction in HFSS males only. HFSS increased the expression of immune regulation genes in female PVAT and ion transport genes in male PVAT but had no effect on total numbers of immune cells in the aorta in either sex. Despite having similar effects on metabolic parameters in males and females, HFSS caused contrasting effects on vascular function with and without PVAT. These data highlight the sexual dimorphisms of PVAT in regulating the vasculature in healthy and diseased states.</p>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"39 5","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fj.202401871R","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fj.202401871R","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Perivascular adipose tissue (PVAT) expansion promotes inflammation and vascular dysfunction in metabolic syndrome (MetS), but the sexual dimorphisms of PVAT are poorly understood. Using a new mouse model of diet-induced MetS, we characterized the aorta and determined the influence of PVAT on vascular function in males and females. Six-week-old C57BL/6 mice were fed either a high-fat diet (43% kcal in food) with high sugar and salt in their drinking water (10% high fructose corn syrup and 0.9% NaCl; HFSS), or a normal chow diet (NCD) for 10 weeks. The aorta was characterized at endpoint using pin myography, flow cytometry, bulk RNA-sequencing, GSEA analysis, and histology. Compared to NCD-fed mice, HFSS-fed mice displayed higher weight gain, fasting blood glucose, systolic blood pressure, aortic fibrosis, and perivascular adipocyte cross-sectional area, regardless of sex (p < .05). Circulating adiponectin levels were also higher in HFSS-fed males compared to NCD males. PVAT enhanced U46619-mediated contraction in HFSS males only. HFSS increased the expression of immune regulation genes in female PVAT and ion transport genes in male PVAT but had no effect on total numbers of immune cells in the aorta in either sex. Despite having similar effects on metabolic parameters in males and females, HFSS caused contrasting effects on vascular function with and without PVAT. These data highlight the sexual dimorphisms of PVAT in regulating the vasculature in healthy and diseased states.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
The FASEB Journal
The FASEB Journal 生物-生化与分子生物学
CiteScore
9.20
自引率
2.10%
发文量
6243
审稿时长
3 months
期刊介绍: The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信