Preparation and characterization of a highly dispersed Ru/CeZrO2 catalyst for CO2 methanation with improved activity†

IF 4.4 3区 化学 Q2 CHEMISTRY, PHYSICAL
Weiwen Yan , Menghui Liu , Mengxing Li , Liangkai Xu , Chang-jun Liu
{"title":"Preparation and characterization of a highly dispersed Ru/CeZrO2 catalyst for CO2 methanation with improved activity†","authors":"Weiwen Yan ,&nbsp;Menghui Liu ,&nbsp;Mengxing Li ,&nbsp;Liangkai Xu ,&nbsp;Chang-jun Liu","doi":"10.1039/d4cy01332h","DOIUrl":null,"url":null,"abstract":"<div><div>CO<sub>2</sub> hydrogenation to methane has drawn increasing interest in recent years. Significant efforts are being made to find a catalyst with superior catalytic performance at low temperatures. In this work, a highly dispersed Ru/CeZrO<sub>2</sub> catalyst with a Ce/Zr molar ratio of 4/1 was prepared <em>via</em> the decomposition of a ruthenium precursor by energetic species (such as electrons and radicals) from a dielectric barrier discharge (DBD) plasma, operated at about 150 °C. This was followed by thermal hydrogen reduction, resulting in dramatically enhanced activity and stability. For instance, at 275 °C, the methane formation rate on the plasma-decomposed catalyst was found to be about twice that of the catalyst prepared by the thermal decomposition of ruthenium precursor. The plasma-decomposed catalyst exhibited higher dispersion of Ru nanoparticles, enhanced electronic metal–support interactions and improved hydrogen dissociation ability, further facilitating hydrogen spillover from Ru to the surface of CeZrO<sub>2</sub> support. Thus, the plasma decomposition caused more surface oxygen vacancies, providing additional adsorption sites for CO<sub>2</sub>. Analyses <em>via in situ</em> diffuse reflectance infrared Fourier transform spectroscopy revealed that CO<sub>2</sub> methanation followed the HCOO* and CO* routes on both catalysts, while the plasma decomposition treatment mainly facilitated catalytic performance at low temperatures by accelerating the formation and consumption of HCOO* in the formate route.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"15 5","pages":"Pages 1557-1566"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2044475325000383","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

CO2 hydrogenation to methane has drawn increasing interest in recent years. Significant efforts are being made to find a catalyst with superior catalytic performance at low temperatures. In this work, a highly dispersed Ru/CeZrO2 catalyst with a Ce/Zr molar ratio of 4/1 was prepared via the decomposition of a ruthenium precursor by energetic species (such as electrons and radicals) from a dielectric barrier discharge (DBD) plasma, operated at about 150 °C. This was followed by thermal hydrogen reduction, resulting in dramatically enhanced activity and stability. For instance, at 275 °C, the methane formation rate on the plasma-decomposed catalyst was found to be about twice that of the catalyst prepared by the thermal decomposition of ruthenium precursor. The plasma-decomposed catalyst exhibited higher dispersion of Ru nanoparticles, enhanced electronic metal–support interactions and improved hydrogen dissociation ability, further facilitating hydrogen spillover from Ru to the surface of CeZrO2 support. Thus, the plasma decomposition caused more surface oxygen vacancies, providing additional adsorption sites for CO2. Analyses via in situ diffuse reflectance infrared Fourier transform spectroscopy revealed that CO2 methanation followed the HCOO* and CO* routes on both catalysts, while the plasma decomposition treatment mainly facilitated catalytic performance at low temperatures by accelerating the formation and consumption of HCOO* in the formate route.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信