Equipping With Cognition: Interactive Motion Planning Using Metacognitive-Attribution Inspired Reinforcement Learning for Autonomous Vehicles

IF 7.9 1区 工程技术 Q1 ENGINEERING, CIVIL
Xiaohui Hou;Minggang Gan;Wei Wu;Yuan Ji;Shiyue Zhao;Jie Chen
{"title":"Equipping With Cognition: Interactive Motion Planning Using Metacognitive-Attribution Inspired Reinforcement Learning for Autonomous Vehicles","authors":"Xiaohui Hou;Minggang Gan;Wei Wu;Yuan Ji;Shiyue Zhao;Jie Chen","doi":"10.1109/TITS.2024.3520514","DOIUrl":null,"url":null,"abstract":"This study introduces the Metacognitive-Attribution Inspired Reinforcement Learning (MAIRL) approach, designed to address unprotected interactive left turns at intersections—one of the most challenging tasks in autonomous driving. By integrating the Metacognitive Theory and Attribution Theory from the psychology field with reinforcement learning, this study enriches the learning mechanisms of autonomous vehicles with human cognitive processes. Specifically, it applies Metacognitive Theory’s three core elements—Metacognitive Knowledge, Metacognitive Monitoring, and Metacognitive Reflection—to enhance the control framework’s capabilities in skill differentiation, real-time assessment, and adaptive learning for interactive motion planning. Furthermore, inspired by Attribution Theory, it decomposes the reward system in RL algorithms into three components: 1) skill improvement, 2) existing ability, and 3) environmental stochasticity. This framework emulates human learning and behavior adjustment, incorporating a deeper cognitive emulation into reinforcement algorithms to foster a unified cognitive structure and control strategy. Contrastive tests conducted in various intersection scenarios with differing traffic densities demonstrated the superior performance of the proposed controller, which outperformed baseline algorithms in success rates and had lower collision and timeout incidents. This interdisciplinary approach not only enhances the understanding and applicability of RL algorithms but also represents a meaningful step towards modeling advanced human cognitive processes in the field of autonomous driving.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"26 3","pages":"4178-4191"},"PeriodicalIF":7.9000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10819259/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces the Metacognitive-Attribution Inspired Reinforcement Learning (MAIRL) approach, designed to address unprotected interactive left turns at intersections—one of the most challenging tasks in autonomous driving. By integrating the Metacognitive Theory and Attribution Theory from the psychology field with reinforcement learning, this study enriches the learning mechanisms of autonomous vehicles with human cognitive processes. Specifically, it applies Metacognitive Theory’s three core elements—Metacognitive Knowledge, Metacognitive Monitoring, and Metacognitive Reflection—to enhance the control framework’s capabilities in skill differentiation, real-time assessment, and adaptive learning for interactive motion planning. Furthermore, inspired by Attribution Theory, it decomposes the reward system in RL algorithms into three components: 1) skill improvement, 2) existing ability, and 3) environmental stochasticity. This framework emulates human learning and behavior adjustment, incorporating a deeper cognitive emulation into reinforcement algorithms to foster a unified cognitive structure and control strategy. Contrastive tests conducted in various intersection scenarios with differing traffic densities demonstrated the superior performance of the proposed controller, which outperformed baseline algorithms in success rates and had lower collision and timeout incidents. This interdisciplinary approach not only enhances the understanding and applicability of RL algorithms but also represents a meaningful step towards modeling advanced human cognitive processes in the field of autonomous driving.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Intelligent Transportation Systems
IEEE Transactions on Intelligent Transportation Systems 工程技术-工程:电子与电气
CiteScore
14.80
自引率
12.90%
发文量
1872
审稿时长
7.5 months
期刊介绍: The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信