Hongcheng Yang;Dingkang Liang;Zhe Liu;Jingyu Li;Zhikang Zou;Xiaoqing Ye;Xiang Bai
{"title":"An Empirical Study of Ground Segmentation for 3-D Object Detection","authors":"Hongcheng Yang;Dingkang Liang;Zhe Liu;Jingyu Li;Zhikang Zou;Xiaoqing Ye;Xiang Bai","doi":"10.1109/TITS.2025.3532436","DOIUrl":null,"url":null,"abstract":"The ratio of foreground and background points directly impacts the accuracy and speed of the lidar-based 3D object detection methods. However, existing methods generally ignore the impact of ground points. Although some traditional ground segmentation algorithms are available to remove ground point clouds, they usually suffer from over-segmentation, which leads to a sub-optimal and even worse performance for the downstream 3D detection task. We conduct an in-depth analysis and attribute this phenomenon to the reason that some crucial foreground points attached to the ground (e.g., the wheels of Cars, or the feet of Pedestrians) are directly removed due to over-segmentation. To this end, we propose a new Attached Point Restoring (APR) module to recover these discarded foreground points. Experimental results demonstrate the effectiveness and generalization of APR by integrating it into various ground segmentation algorithms to boost the performance or the running time of 3D detection on KITTI and Waymo datasets. Finally, we hope this paper can serve as a new guide to inspire future research in this field. Code is available at <uri>https://github.com/yhc2021/GPR</uri>.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"26 3","pages":"3071-3083"},"PeriodicalIF":7.9000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10858601/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The ratio of foreground and background points directly impacts the accuracy and speed of the lidar-based 3D object detection methods. However, existing methods generally ignore the impact of ground points. Although some traditional ground segmentation algorithms are available to remove ground point clouds, they usually suffer from over-segmentation, which leads to a sub-optimal and even worse performance for the downstream 3D detection task. We conduct an in-depth analysis and attribute this phenomenon to the reason that some crucial foreground points attached to the ground (e.g., the wheels of Cars, or the feet of Pedestrians) are directly removed due to over-segmentation. To this end, we propose a new Attached Point Restoring (APR) module to recover these discarded foreground points. Experimental results demonstrate the effectiveness and generalization of APR by integrating it into various ground segmentation algorithms to boost the performance or the running time of 3D detection on KITTI and Waymo datasets. Finally, we hope this paper can serve as a new guide to inspire future research in this field. Code is available at https://github.com/yhc2021/GPR.
期刊介绍:
The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.