Enhancing Cyclist Safety Through Driver Gaze Analysis at Intersections With Cycle Lanes

IF 7.9 1区 工程技术 Q1 ENGINEERING, CIVIL
Jibran A. Abbasi;Ashkan Parsi;Nicolas Ringelstein;Patrice Reilhac;Edward Jones;Martin Glavin
{"title":"Enhancing Cyclist Safety Through Driver Gaze Analysis at Intersections With Cycle Lanes","authors":"Jibran A. Abbasi;Ashkan Parsi;Nicolas Ringelstein;Patrice Reilhac;Edward Jones;Martin Glavin","doi":"10.1109/TITS.2025.3530872","DOIUrl":null,"url":null,"abstract":"In urban areas, roads with dedicated cycle lanes play a vital role in cyclist safety. However, accidents can still occur when vehicles cross the cycle lane at intersections. Accidents mostly occur due to failure of the driver to see a cyclist on the cycle lane, particularly when the cyclist is going straight through the intersection, and the vehicle is turning. For safe driving, it is critical that the drivers visually scan the area in the vicinity of the junction and the car, particularly using the wing-mirror, prior to making turns. This paper describes results from a set of test drives using in-vehicle non-invasive eye-tracking and in-vehicle CAN bus sensors to determine driver behaviour. In total, 20 drivers were monitored through 5 different intersections with cycle lanes. The study found that approximately 83% of drivers did not check their wing mirror prior to, or during their turning manoeuvre, potentially putting pedestrian, cyclists, scooter and hoverboard users in danger. An algorithm was developed to analyse driver gaze during the turning manoeuvre to identify cases where they failed to look at the wing mirror. The gaze pattern and gaze concentration on the mirror helps to identify safe and unsafe driving behaviour. This information can then be used to improve Advanced Driver-Assistance Systems (ADAS) to create a safer environment for all road users.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"26 3","pages":"3175-3184"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10871193","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10871193/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

In urban areas, roads with dedicated cycle lanes play a vital role in cyclist safety. However, accidents can still occur when vehicles cross the cycle lane at intersections. Accidents mostly occur due to failure of the driver to see a cyclist on the cycle lane, particularly when the cyclist is going straight through the intersection, and the vehicle is turning. For safe driving, it is critical that the drivers visually scan the area in the vicinity of the junction and the car, particularly using the wing-mirror, prior to making turns. This paper describes results from a set of test drives using in-vehicle non-invasive eye-tracking and in-vehicle CAN bus sensors to determine driver behaviour. In total, 20 drivers were monitored through 5 different intersections with cycle lanes. The study found that approximately 83% of drivers did not check their wing mirror prior to, or during their turning manoeuvre, potentially putting pedestrian, cyclists, scooter and hoverboard users in danger. An algorithm was developed to analyse driver gaze during the turning manoeuvre to identify cases where they failed to look at the wing mirror. The gaze pattern and gaze concentration on the mirror helps to identify safe and unsafe driving behaviour. This information can then be used to improve Advanced Driver-Assistance Systems (ADAS) to create a safer environment for all road users.
自行车专用道交叉口驾驶员注视分析提高骑车人安全
在城市地区,有专用自行车道的道路对骑自行车的人的安全起着至关重要的作用。然而,当车辆穿过十字路口的自行车道时,仍然会发生事故。事故的发生大多是由于司机没有看到自行车道上的骑车人,特别是当骑车人直接穿过十字路口时,车辆正在转弯。为了安全驾驶,驾驶员在转弯之前,尤其是使用后视镜,用视觉扫描路口和汽车附近的区域是至关重要的。本文描述了一组使用车载非侵入性眼球追踪和车载CAN总线传感器来确定驾驶员行为的测试驾驶结果。总共有20名司机通过5个不同的十字路口的自行车道进行监控。研究发现,大约83%的司机在转弯前或转弯时没有检查后视镜,这可能会让行人、骑自行车的人、滑板车和悬浮滑板的人处于危险之中。开发了一种算法来分析驾驶员在转弯时的凝视,以确定他们没有看后视镜的情况。注视模式和注视镜中的焦点有助于识别安全和不安全的驾驶行为。这些信息可用于改进高级驾驶辅助系统(ADAS),为所有道路使用者创造更安全的环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Intelligent Transportation Systems
IEEE Transactions on Intelligent Transportation Systems 工程技术-工程:电子与电气
CiteScore
14.80
自引率
12.90%
发文量
1872
审稿时长
7.5 months
期刊介绍: The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信