Xiaojie Lin;Baihe Ma;Xu Wang;Guangsheng Yu;Ying He;Wei Ni;Ren Ping Liu
{"title":"CAN-Trace Attack: Exploit CAN Messages to Uncover Driving Trajectories","authors":"Xiaojie Lin;Baihe Ma;Xu Wang;Guangsheng Yu;Ying He;Wei Ni;Ren Ping Liu","doi":"10.1109/TITS.2025.3532455","DOIUrl":null,"url":null,"abstract":"Driving trajectory data remains vulnerable to privacy breaches despite existing mitigation measures. Traditional methods for detecting driving trajectories typically rely on map-matching the path using Global Positioning System (GPS) data, which is susceptible to GPS data outage. This paper introduces CAN-Trace, a novel privacy attack mechanism that leverages Controller Area Network (CAN) messages to uncover driving trajectories, posing a significant risk to drivers’ long-term privacy. A new trajectory reconstruction algorithm is proposed to transform the CAN messages, specifically vehicle speed and accelerator pedal position, into weighted graphs accommodating various driving statuses. CAN-Trace identifies driving trajectories using graph-matching algorithms applied to the created graphs in comparison to road networks. We also design a new metric to evaluate matched candidates, which allows for potential data gaps and matching inaccuracies. Empirical validation under various real-world conditions, encompassing different vehicles and driving regions, demonstrates the efficacy of CAN-Trace: it achieves an attack success rate of up to 90.59% in the urban region, and 99.41% in the suburban region.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"26 3","pages":"3223-3236"},"PeriodicalIF":7.9000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10858595/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Driving trajectory data remains vulnerable to privacy breaches despite existing mitigation measures. Traditional methods for detecting driving trajectories typically rely on map-matching the path using Global Positioning System (GPS) data, which is susceptible to GPS data outage. This paper introduces CAN-Trace, a novel privacy attack mechanism that leverages Controller Area Network (CAN) messages to uncover driving trajectories, posing a significant risk to drivers’ long-term privacy. A new trajectory reconstruction algorithm is proposed to transform the CAN messages, specifically vehicle speed and accelerator pedal position, into weighted graphs accommodating various driving statuses. CAN-Trace identifies driving trajectories using graph-matching algorithms applied to the created graphs in comparison to road networks. We also design a new metric to evaluate matched candidates, which allows for potential data gaps and matching inaccuracies. Empirical validation under various real-world conditions, encompassing different vehicles and driving regions, demonstrates the efficacy of CAN-Trace: it achieves an attack success rate of up to 90.59% in the urban region, and 99.41% in the suburban region.
期刊介绍:
The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.