Enhancing Cloud Security: A Multi-Factor Authentication and Adaptive Cryptography Approach Using Machine Learning Techniques

K. Sasikumar;Sivakumar Nagarajan
{"title":"Enhancing Cloud Security: A Multi-Factor Authentication and Adaptive Cryptography Approach Using Machine Learning Techniques","authors":"K. Sasikumar;Sivakumar Nagarajan","doi":"10.1109/OJCS.2025.3538557","DOIUrl":null,"url":null,"abstract":"The rapid expansion of cloud computing underscores the critical need for advanced security measures to protect sensitive data on remote servers. Authentication is crucial for safeguarding these data. Despite various proposed methods, vulnerabilities persist. This article introduces a novel multi-factor authentication system integrated with a hybrid cryptographic framework that dynamically changes encryption algorithms using machine learning techniques based on an intrusion-detection system. The proposed system employs passwords, conditional attributes, and fingerprint authentication to derive the encryption key from fingerprint data. It uses a dual-encryption strategy that combines five algorithm pairs: AES + HMAC (SHA-256), ECC + HMAC (SHA-512), HMAC-MD5 + PBKDF2, Twofish + Argon2, and Blowfish + HMAC SHA3-256. A Hybrid CNN-transformer model predicts and classifies attacks by dynamically adjusting an encryption algorithm to secure the data. The framework exhibited strong resilience against brute force, spoofing, phishing, guessing, and impersonation attacks. The proposed model achieved a commendable accuracy of 96.8%, outperforming other models. Implementing this framework in a cloud authentication environment significantly enhances data confidentiality and protects against unauthorized access. This study highlights the potential of combining multi-factor authentication and adaptive cryptography to obtain robust cloud security solutions.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"6 ","pages":"392-402"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10872830","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10872830/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid expansion of cloud computing underscores the critical need for advanced security measures to protect sensitive data on remote servers. Authentication is crucial for safeguarding these data. Despite various proposed methods, vulnerabilities persist. This article introduces a novel multi-factor authentication system integrated with a hybrid cryptographic framework that dynamically changes encryption algorithms using machine learning techniques based on an intrusion-detection system. The proposed system employs passwords, conditional attributes, and fingerprint authentication to derive the encryption key from fingerprint data. It uses a dual-encryption strategy that combines five algorithm pairs: AES + HMAC (SHA-256), ECC + HMAC (SHA-512), HMAC-MD5 + PBKDF2, Twofish + Argon2, and Blowfish + HMAC SHA3-256. A Hybrid CNN-transformer model predicts and classifies attacks by dynamically adjusting an encryption algorithm to secure the data. The framework exhibited strong resilience against brute force, spoofing, phishing, guessing, and impersonation attacks. The proposed model achieved a commendable accuracy of 96.8%, outperforming other models. Implementing this framework in a cloud authentication environment significantly enhances data confidentiality and protects against unauthorized access. This study highlights the potential of combining multi-factor authentication and adaptive cryptography to obtain robust cloud security solutions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信