Dual Bidirectional Feature Enhancement Network for Continuous Space-Time Video Super-Resolution

IF 4.2 2区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Laigan Luo;Benshun Yi;Zhongyuan Wang;Zheng He;Chao Zhu
{"title":"Dual Bidirectional Feature Enhancement Network for Continuous Space-Time Video Super-Resolution","authors":"Laigan Luo;Benshun Yi;Zhongyuan Wang;Zheng He;Chao Zhu","doi":"10.1109/TCI.2025.3531717","DOIUrl":null,"url":null,"abstract":"Space-time video super-resolution aims to reconstruct the high-frame-rate and high-resolution video from the corresponding low-frame-rate and low-resolution counterpart. Currently, the task faces the challenge of efficiently extracting long-range temporal information from available frames. Meanwhile, existing methods can only produce results for a specific moment and cannot interpolate high-resolution frames for consecutive time stamps. To address these issues, we propose a multi-stage feature enhancement method that better utilizes the limited spatio-temporal information subject to the efficiency constraint. Our approach involves a pre-alignment module that extracts coarse aligned features from the adjacent odd-numbered frames in the first stage. In the second stage, we use a bidirectional recurrent module to refine the aligned features by exploiting the long-range information from all input frames while simultaneously performing video frame interpolation. The proposed video frame interpolation module concatenates temporal information with spatial features to achieve continuous interpolation, which refines the interpolated feature progressively and enhances the spatial information by utilizing the features of different scales. Extensive experiments on various benchmarks demonstrate that the proposed method outperforms state-of-the-art in both quantitative metrics and visual effects.","PeriodicalId":56022,"journal":{"name":"IEEE Transactions on Computational Imaging","volume":"11 ","pages":"228-236"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Imaging","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10857355/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Space-time video super-resolution aims to reconstruct the high-frame-rate and high-resolution video from the corresponding low-frame-rate and low-resolution counterpart. Currently, the task faces the challenge of efficiently extracting long-range temporal information from available frames. Meanwhile, existing methods can only produce results for a specific moment and cannot interpolate high-resolution frames for consecutive time stamps. To address these issues, we propose a multi-stage feature enhancement method that better utilizes the limited spatio-temporal information subject to the efficiency constraint. Our approach involves a pre-alignment module that extracts coarse aligned features from the adjacent odd-numbered frames in the first stage. In the second stage, we use a bidirectional recurrent module to refine the aligned features by exploiting the long-range information from all input frames while simultaneously performing video frame interpolation. The proposed video frame interpolation module concatenates temporal information with spatial features to achieve continuous interpolation, which refines the interpolated feature progressively and enhances the spatial information by utilizing the features of different scales. Extensive experiments on various benchmarks demonstrate that the proposed method outperforms state-of-the-art in both quantitative metrics and visual effects.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Computational Imaging
IEEE Transactions on Computational Imaging Mathematics-Computational Mathematics
CiteScore
8.20
自引率
7.40%
发文量
59
期刊介绍: The IEEE Transactions on Computational Imaging will publish articles where computation plays an integral role in the image formation process. Papers will cover all areas of computational imaging ranging from fundamental theoretical methods to the latest innovative computational imaging system designs. Topics of interest will include advanced algorithms and mathematical techniques, model-based data inversion, methods for image and signal recovery from sparse and incomplete data, techniques for non-traditional sensing of image data, methods for dynamic information acquisition and extraction from imaging sensors, software and hardware for efficient computation in imaging systems, and highly novel imaging system design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信