Burj Khalifa-inspired reconfigurable microstrip patch antenna for wireless solutions

IF 1.6 4区 地球科学 Q3 ASTRONOMY & ASTROPHYSICS
Radio Science Pub Date : 2025-02-01 DOI:10.1029/2024RS008114
J. Salah;M. Madi;M. El Abbasi;M. Moussa;A. Daher;M. Hussein;K. Kabalan
{"title":"Burj Khalifa-inspired reconfigurable microstrip patch antenna for wireless solutions","authors":"J. Salah;M. Madi;M. El Abbasi;M. Moussa;A. Daher;M. Hussein;K. Kabalan","doi":"10.1029/2024RS008114","DOIUrl":null,"url":null,"abstract":"This paper presents a new microstrip patch antenna inspired by the iconic Burj Khalifa, Dubai's world's tallest skyscraper. The antenna design focuses on being compact, lightweight, cost-effective, and versatile. Simulated through HFSS software, the patch antenna demonstrates a multi-frequency operation. Fabricated on a double-sided copper FR4 epoxy PCB (4 × 8 cm<sup>2</sup>, 1.6 mm thickness) using a coaxial probe feeding method, it achieves a gain exceeding 7 dB at 7 GHz. Prototypes show excellent consistency between measured and simulated reflection coefficients and gains at 4.8, 5.7, and 7 GHz. Two additional designs are presented to adjust the resonance frequency, making it suitable for biomedical sensors, WIFI, and point-to-point microwave links. One design involves adding a short slot that is close to the feed point, while the other design includes a pair of varactors. Both designs create a reconfigurable microstrip antenna with electromagnetic characteristics that can be adjusted to increase its electrical length. The antenna resonates at 4.8 GHz. The slotted short patch shifts the resonance to 3.1 GHz, and the varactor patch shifts the resonance frequency to 2.1 GHz. When the DC reverse bias voltage of the varactors varies from 0 to 6 V, the gain improves to 15.2 dB.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"60 2","pages":"1-15"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radio Science","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10909396/","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a new microstrip patch antenna inspired by the iconic Burj Khalifa, Dubai's world's tallest skyscraper. The antenna design focuses on being compact, lightweight, cost-effective, and versatile. Simulated through HFSS software, the patch antenna demonstrates a multi-frequency operation. Fabricated on a double-sided copper FR4 epoxy PCB (4 × 8 cm2, 1.6 mm thickness) using a coaxial probe feeding method, it achieves a gain exceeding 7 dB at 7 GHz. Prototypes show excellent consistency between measured and simulated reflection coefficients and gains at 4.8, 5.7, and 7 GHz. Two additional designs are presented to adjust the resonance frequency, making it suitable for biomedical sensors, WIFI, and point-to-point microwave links. One design involves adding a short slot that is close to the feed point, while the other design includes a pair of varactors. Both designs create a reconfigurable microstrip antenna with electromagnetic characteristics that can be adjusted to increase its electrical length. The antenna resonates at 4.8 GHz. The slotted short patch shifts the resonance to 3.1 GHz, and the varactor patch shifts the resonance frequency to 2.1 GHz. When the DC reverse bias voltage of the varactors varies from 0 to 6 V, the gain improves to 15.2 dB.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Radio Science
Radio Science 工程技术-地球化学与地球物理
CiteScore
3.30
自引率
12.50%
发文量
112
审稿时长
1 months
期刊介绍: Radio Science (RDS) publishes original scientific contributions on radio-frequency electromagnetic-propagation and its applications. Contributions covering measurement, modelling, prediction and forecasting techniques pertinent to fields and waves - including antennas, signals and systems, the terrestrial and space environment and radio propagation problems in radio astronomy - are welcome. Contributions may address propagation through, interaction with, and remote sensing of structures, geophysical media, plasmas, and materials, as well as the application of radio frequency electromagnetic techniques to remote sensing of the Earth and other bodies in the solar system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信