Recent advancements in morphing applications: Architecture, artificial intelligence integration, challenges, and future trends-a comprehensive survey

IF 5 1区 工程技术 Q1 ENGINEERING, AEROSPACE
Md. Najmul Mowla , Davood Asadi , Tahir Durhasan , Javad Rashid Jafari , Mohammadreza Amoozgar
{"title":"Recent advancements in morphing applications: Architecture, artificial intelligence integration, challenges, and future trends-a comprehensive survey","authors":"Md. Najmul Mowla ,&nbsp;Davood Asadi ,&nbsp;Tahir Durhasan ,&nbsp;Javad Rashid Jafari ,&nbsp;Mohammadreza Amoozgar","doi":"10.1016/j.ast.2025.110102","DOIUrl":null,"url":null,"abstract":"<div><div>This study provides a comprehensive review of recent advancements in aerospace morphing technologies, focusing on integrating artificial intelligence (AI) into morphing architectures. It emphasizes AI's pivotal role in optimizing these systems, particularly through machine learning (ML), deep learning (DL), and reinforcement learning (RL), to enhance real-time adaptability, performance, and efficiency. The review categorizes developments in smart materials, compliant mechanisms, and adaptive structures, offering a detailed analysis of their architectural foundations. It further examines AI-driven aerodynamic optimization and control systems, highlighting recent solutions to structural integrity, energy efficiency, and scalability challenges. Key contributions since 2020 are synthesized through a year-by-year analysis, offering a clear overview of the research landscape. The paper also addresses emerging challenges in aerospace morphing and proposes strategies to alleviate them. Recommendations for future advancements emphasize the integration of state-of-the-art technologies. By critically evaluating current capabilities and limitations, this review provides valuable insights for researchers and practitioners, identifying AI's transformative potential in morphing systems and outlining the technical challenges that must be addressed for future morphing aerospace applications.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"161 ","pages":"Article 110102"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963825001737","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

This study provides a comprehensive review of recent advancements in aerospace morphing technologies, focusing on integrating artificial intelligence (AI) into morphing architectures. It emphasizes AI's pivotal role in optimizing these systems, particularly through machine learning (ML), deep learning (DL), and reinforcement learning (RL), to enhance real-time adaptability, performance, and efficiency. The review categorizes developments in smart materials, compliant mechanisms, and adaptive structures, offering a detailed analysis of their architectural foundations. It further examines AI-driven aerodynamic optimization and control systems, highlighting recent solutions to structural integrity, energy efficiency, and scalability challenges. Key contributions since 2020 are synthesized through a year-by-year analysis, offering a clear overview of the research landscape. The paper also addresses emerging challenges in aerospace morphing and proposes strategies to alleviate them. Recommendations for future advancements emphasize the integration of state-of-the-art technologies. By critically evaluating current capabilities and limitations, this review provides valuable insights for researchers and practitioners, identifying AI's transformative potential in morphing systems and outlining the technical challenges that must be addressed for future morphing aerospace applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aerospace Science and Technology
Aerospace Science and Technology 工程技术-工程:宇航
CiteScore
10.30
自引率
28.60%
发文量
654
审稿时长
54 days
期刊介绍: Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to: • The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites • The control of their environment • The study of various systems they are involved in, as supports or as targets. Authors are invited to submit papers on new advances in the following topics to aerospace applications: • Fluid dynamics • Energetics and propulsion • Materials and structures • Flight mechanics • Navigation, guidance and control • Acoustics • Optics • Electromagnetism and radar • Signal and image processing • Information processing • Data fusion • Decision aid • Human behaviour • Robotics and intelligent systems • Complex system engineering. Etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信