Cong Zhu, Yongkuan Yang, Xiangsong Kong, Yanxiang Yang
{"title":"A dual dynamic constraint boundary based constrained multi-objective evolutionary algorithm for small feasible regions","authors":"Cong Zhu, Yongkuan Yang, Xiangsong Kong, Yanxiang Yang","doi":"10.1016/j.eswa.2025.127008","DOIUrl":null,"url":null,"abstract":"<div><div>Addressing constrained multi-objective optimization problems (CMOPs) with small feasible regions presents a significant challenge, as existing algorithms often struggle to balance feasibility, diversity, and convergence within the population. To overcome this challenge, we propose a dual dynamic constraint boundary-based constrained multi-objective evolutionary algorithm, referred to as TPDCB. In TPDCB, the original CMOP is transformed into two dynamic CMOPs using a dual dynamic constraint boundary strategy to better identify feasible solutions. Specifically, for the two dynamic CMOPs within the constraint relaxation boundary, the first dynamic CMOP primarily focuses on multi-objective optimization, while the second dynamic CMOP equally emphasizes both multi-objective optimization and constraint satisfaction to enhance individual diversity. Furthermore, an auxiliary problem without constraints is introduced by treating constraint violations as an additional optimization objective, which improves the algorithm’s global convergence. Finally, a tri-population co-evolution framework is proposed to simultaneously tackle all three constructed problems. The algorithm’s performance is evaluated on 22 benchmark problems and three real-world applications, and compared to seven state-of-the-art algorithms. Experimental results demonstrate that TPDCB is competitive in solving CMOPs with small feasible regions.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"275 ","pages":"Article 127008"},"PeriodicalIF":7.5000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095741742500630X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Addressing constrained multi-objective optimization problems (CMOPs) with small feasible regions presents a significant challenge, as existing algorithms often struggle to balance feasibility, diversity, and convergence within the population. To overcome this challenge, we propose a dual dynamic constraint boundary-based constrained multi-objective evolutionary algorithm, referred to as TPDCB. In TPDCB, the original CMOP is transformed into two dynamic CMOPs using a dual dynamic constraint boundary strategy to better identify feasible solutions. Specifically, for the two dynamic CMOPs within the constraint relaxation boundary, the first dynamic CMOP primarily focuses on multi-objective optimization, while the second dynamic CMOP equally emphasizes both multi-objective optimization and constraint satisfaction to enhance individual diversity. Furthermore, an auxiliary problem without constraints is introduced by treating constraint violations as an additional optimization objective, which improves the algorithm’s global convergence. Finally, a tri-population co-evolution framework is proposed to simultaneously tackle all three constructed problems. The algorithm’s performance is evaluated on 22 benchmark problems and three real-world applications, and compared to seven state-of-the-art algorithms. Experimental results demonstrate that TPDCB is competitive in solving CMOPs with small feasible regions.
期刊介绍:
Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.