Kaiyu Li , Yuzhaobi Song , Xinyi Zhu , Lingxian Zhang
{"title":"A severity estimation method for lightweight cucumber leaf disease based on DM-BiSeNet","authors":"Kaiyu Li , Yuzhaobi Song , Xinyi Zhu , Lingxian Zhang","doi":"10.1016/j.inpa.2024.03.003","DOIUrl":null,"url":null,"abstract":"<div><div>Accurately estimating the severity of cucumber diseases is crucial for improving cucumber quality and minimizing economic losses. Deep learning techniques have shown promising results in automatically extracting disease image features for severity estimation. However, existing methods still face challenges in accurately estimating disease severity under complex backgrounds and achieving real-time performance.This paper presents a lightweight severity estimation method called DM-BiSeNet to address these challenges. The proposed method utilizes BiSeNet V2 as the base network and incorporates depthwise separable convolutional blocks to optimize the detail branch. A simplified MobileNet V3 network is also constructed to optimize the semantic branch. The model training process is accelerated using the AdamW optimizer. To evaluate the performance of DM-BiSeNet, a dataset consisting of cucumber powdery mildew and downy mildew disease images collected in natural scenes is utilized. Experimental results demonstrate that DM-BiSeNet achieves higher accuracy in severity estimation, with an <em>R<sup>2</sup></em> value of 0.9407 and an RMSE of 1.0680, outperforming the comparison methods. Moreover, DM-BiSeNet exhibits a complexity of 1.54 GFLOPs and is capable of reasoning 94 disease images per second.The proposed DM-BiSeNet model offers a lightweight and effective solution for accurate and rapid severity estimation of cucumber diseases under complex backgrounds. It provides a valuable technical tool for quantitative disease estimation, offering significant potential for practical applications.</div></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"12 1","pages":"Pages 68-79"},"PeriodicalIF":7.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317324000209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurately estimating the severity of cucumber diseases is crucial for improving cucumber quality and minimizing economic losses. Deep learning techniques have shown promising results in automatically extracting disease image features for severity estimation. However, existing methods still face challenges in accurately estimating disease severity under complex backgrounds and achieving real-time performance.This paper presents a lightweight severity estimation method called DM-BiSeNet to address these challenges. The proposed method utilizes BiSeNet V2 as the base network and incorporates depthwise separable convolutional blocks to optimize the detail branch. A simplified MobileNet V3 network is also constructed to optimize the semantic branch. The model training process is accelerated using the AdamW optimizer. To evaluate the performance of DM-BiSeNet, a dataset consisting of cucumber powdery mildew and downy mildew disease images collected in natural scenes is utilized. Experimental results demonstrate that DM-BiSeNet achieves higher accuracy in severity estimation, with an R2 value of 0.9407 and an RMSE of 1.0680, outperforming the comparison methods. Moreover, DM-BiSeNet exhibits a complexity of 1.54 GFLOPs and is capable of reasoning 94 disease images per second.The proposed DM-BiSeNet model offers a lightweight and effective solution for accurate and rapid severity estimation of cucumber diseases under complex backgrounds. It provides a valuable technical tool for quantitative disease estimation, offering significant potential for practical applications.
期刊介绍:
Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining