Dynamical counterfactual inference under time-series model for waterflooding oilfield

IF 4.2 Q2 ENERGY & FUELS
Guoquan Wen , Chao Min , Qingxia Zhang , Guoyong Liao
{"title":"Dynamical counterfactual inference under time-series model for waterflooding oilfield","authors":"Guoquan Wen ,&nbsp;Chao Min ,&nbsp;Qingxia Zhang ,&nbsp;Guoyong Liao","doi":"10.1016/j.petlm.2024.11.001","DOIUrl":null,"url":null,"abstract":"<div><div>The performances of numerical simulation and machine learning in production forecasting are severely dependent on precise geological modeling and high-quality history matching. To address these challenges, causal inference is an effective methodology since it can provide a causality for formalizing causality in history, not statistical dependence. In this paper, to dynamically predict oil production from causality existed in waterflooding oilfield, a dynamical counterfactual inference framework is built to predict oil production. The proposed framework can forecast the oil production under non-observation of engineering factors, i.e., counterfactual, and provide the causal effect of engineering factors impacting on oil production. Meanwhile, combining with the practice exploitation in engineering factor impacting on production, a counterfactual experiment is designed to execute counterfactual prediction. Compared with general machine learning and statistical models, our results not only show better performance in oil production flooding but also guide the specific optimization in improving production, which holds more practical application significance.</div></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"11 1","pages":"Pages 113-124"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405656124000476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The performances of numerical simulation and machine learning in production forecasting are severely dependent on precise geological modeling and high-quality history matching. To address these challenges, causal inference is an effective methodology since it can provide a causality for formalizing causality in history, not statistical dependence. In this paper, to dynamically predict oil production from causality existed in waterflooding oilfield, a dynamical counterfactual inference framework is built to predict oil production. The proposed framework can forecast the oil production under non-observation of engineering factors, i.e., counterfactual, and provide the causal effect of engineering factors impacting on oil production. Meanwhile, combining with the practice exploitation in engineering factor impacting on production, a counterfactual experiment is designed to execute counterfactual prediction. Compared with general machine learning and statistical models, our results not only show better performance in oil production flooding but also guide the specific optimization in improving production, which holds more practical application significance.
水驱油田时间序列模型下的动态反事实推理
数值模拟和机器学习在产量预测中的效果严重依赖于精确的地质建模和高质量的历史拟合。为了应对这些挑战,因果推理是一种有效的方法,因为它可以为历史上的因果关系正式化提供因果关系,而不是统计依赖。为了从水驱油田存在的因果关系中动态预测产量,建立了一个动态反事实推理框架进行产量预测。该框架能够在工程因素未观测到的情况下(即反事实情况下)预测石油产量,并提供工程因素对石油产量影响的因果关系。同时,结合工程生产影响因素的实际开发,设计了反事实实验,进行反事实预测。与一般的机器学习和统计模型相比,我们的研究结果不仅在采油驱油中表现出更好的性能,而且对提高产量的具体优化具有指导意义,具有更大的实际应用意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Petroleum
Petroleum Earth and Planetary Sciences-Geology
CiteScore
9.20
自引率
0.00%
发文量
76
审稿时长
124 days
期刊介绍: Examples of appropriate topical areas that will be considered include the following: 1.comprehensive research on oil and gas reservoir (reservoir geology): -geological basis of oil and gas reservoirs -reservoir geochemistry -reservoir formation mechanism -reservoir identification methods and techniques 2.kinetics of oil and gas basins and analyses of potential oil and gas resources: -fine description factors of hydrocarbon accumulation -mechanism analysis on recovery and dynamic accumulation process -relationship between accumulation factors and the accumulation process -analysis of oil and gas potential resource 3.theories and methods for complex reservoir geophysical prospecting: -geophysical basis of deep geologic structures and background of hydrocarbon occurrence -geophysical prediction of deep and complex reservoirs -physical test analyses and numerical simulations of reservoir rocks -anisotropic medium seismic imaging theory and new technology for multiwave seismic exploration -o theories and methods for reservoir fluid geophysical identification and prediction 4.theories, methods, technology, and design for complex reservoir development: -reservoir percolation theory and application technology -field development theories and methods -theory and technology for enhancing recovery efficiency 5.working liquid for oil and gas wells and reservoir protection technology: -working chemicals and mechanics for oil and gas wells -reservoir protection technology 6.new techniques and technologies for oil and gas drilling and production: -under-balanced drilling/gas drilling -special-track well drilling -cementing and completion of oil and gas wells -engineering safety applications for oil and gas wells -new technology of fracture acidizing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信