{"title":"Exploring data science workflows: A practice-oriented approach to teaching processing of massive datasets","authors":"Johannes Schoder , H. Martin Bücker","doi":"10.1016/j.jpdc.2025.105043","DOIUrl":null,"url":null,"abstract":"<div><div>Massive datasets are typically processed by a sequence of different stages, comprising data acquisition and preparation, data processing, data analysis, result validation, and visualization. In conjunction, these stages form a data science workflow, a key element enabling the solution of data-intensive problems. The complexity and heterogeneity of these stages require a diverse set of techniques and skills. This article discusses a hands-on practice-oriented approach aiming to enable and motivate graduate students to engage with realistic data science workflows. A major goal of the approach is to bridge the gap between academia and industry by integrating programming assignments that implement different data workflows with real-world data. In consecutive assignments, students are exposed to the methodology of solving problems using big data frameworks and are required to implement different data workflows of varying complexity. This practice-oriented approach is well received by students, as confirmed by different surveys.</div></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":"200 ","pages":"Article 105043"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0743731525000103","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Massive datasets are typically processed by a sequence of different stages, comprising data acquisition and preparation, data processing, data analysis, result validation, and visualization. In conjunction, these stages form a data science workflow, a key element enabling the solution of data-intensive problems. The complexity and heterogeneity of these stages require a diverse set of techniques and skills. This article discusses a hands-on practice-oriented approach aiming to enable and motivate graduate students to engage with realistic data science workflows. A major goal of the approach is to bridge the gap between academia and industry by integrating programming assignments that implement different data workflows with real-world data. In consecutive assignments, students are exposed to the methodology of solving problems using big data frameworks and are required to implement different data workflows of varying complexity. This practice-oriented approach is well received by students, as confirmed by different surveys.
期刊介绍:
This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing.
The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.