SF-YOLO: A Novel YOLO Framework for Small Object Detection in Aerial Scenes

IF 2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Meng Sun, Le Wang, Wangyu Jiang, Fayaz Ali Dharejo, Guojun Mao, Radu Timofte
{"title":"SF-YOLO: A Novel YOLO Framework for Small Object Detection in Aerial Scenes","authors":"Meng Sun,&nbsp;Le Wang,&nbsp;Wangyu Jiang,&nbsp;Fayaz Ali Dharejo,&nbsp;Guojun Mao,&nbsp;Radu Timofte","doi":"10.1049/ipr2.70027","DOIUrl":null,"url":null,"abstract":"<p>Object detection models are widely applied in the fields such as video surveillance and unmanned aerial vehicles to enable the identification and monitoring of various objects on a diversity of backgrounds. The general CNN-based object detectors primarily rely on downsampling and pooling operations, often struggling with small objects that have low resolution and failing to fully leverage contextual information that can differentiate objects from complex background. To address the problems, we propose a novel YOLO framework called SF-YOLO for small object detection. Firstly, we present a spatial information perception (SIP) module to extract contextual features for different objects through the integration of space to depth operation and large selective kernel module, which dynamically adjusts receptive field of the backbone and obtains the enhanced features for richer understanding of differentiation between objects and background. Furthermore, we design a novel multi-scale feature weighted fusion strategy, which performs weighted fusion on feature maps by combining fast normalized fusion method and CARAFE operation, accurately assessing the importance of each feature and enhancing the representation of small objects. The extensive experiments conducted on VisDrone2019, Tiny-Person and PESMOD datasets demonstrate that our proposed method enables comparable detection performance to state-of-the-art detectors.</p>","PeriodicalId":56303,"journal":{"name":"IET Image Processing","volume":"19 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ipr2.70027","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Image Processing","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ipr2.70027","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Object detection models are widely applied in the fields such as video surveillance and unmanned aerial vehicles to enable the identification and monitoring of various objects on a diversity of backgrounds. The general CNN-based object detectors primarily rely on downsampling and pooling operations, often struggling with small objects that have low resolution and failing to fully leverage contextual information that can differentiate objects from complex background. To address the problems, we propose a novel YOLO framework called SF-YOLO for small object detection. Firstly, we present a spatial information perception (SIP) module to extract contextual features for different objects through the integration of space to depth operation and large selective kernel module, which dynamically adjusts receptive field of the backbone and obtains the enhanced features for richer understanding of differentiation between objects and background. Furthermore, we design a novel multi-scale feature weighted fusion strategy, which performs weighted fusion on feature maps by combining fast normalized fusion method and CARAFE operation, accurately assessing the importance of each feature and enhancing the representation of small objects. The extensive experiments conducted on VisDrone2019, Tiny-Person and PESMOD datasets demonstrate that our proposed method enables comparable detection performance to state-of-the-art detectors.

Abstract Image

SF-YOLO: 用于空中场景小物体检测的新型 YOLO 框架
目标检测模型广泛应用于视频监控、无人机等领域,能够对不同背景下的各种目标进行识别和监控。一般的基于cnn的目标检测器主要依赖于降采样和池化操作,经常在低分辨率的小目标上挣扎,并且不能充分利用上下文信息来区分物体和复杂的背景。为了解决这些问题,我们提出了一种新的YOLO框架,称为SF-YOLO,用于小目标检测。首先,我们提出了空间信息感知(SIP)模块,通过空间深度运算和大选择核模块的融合提取不同目标的上下文特征,动态调整主干的接受场,获得增强的特征,从而更丰富地理解目标与背景的区别;此外,我们设计了一种新的多尺度特征加权融合策略,将快速归一化融合方法与CARAFE操作相结合,对特征映射进行加权融合,准确评估每个特征的重要性,增强小目标的表示。在VisDrone2019、Tiny-Person和PESMOD数据集上进行的大量实验表明,我们提出的方法能够实现与最先进探测器相当的检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Image Processing
IET Image Processing 工程技术-工程:电子与电气
CiteScore
5.40
自引率
8.70%
发文量
282
审稿时长
6 months
期刊介绍: The IET Image Processing journal encompasses research areas related to the generation, processing and communication of visual information. The focus of the journal is the coverage of the latest research results in image and video processing, including image generation and display, enhancement and restoration, segmentation, colour and texture analysis, coding and communication, implementations and architectures as well as innovative applications. Principal topics include: Generation and Display - Imaging sensors and acquisition systems, illumination, sampling and scanning, quantization, colour reproduction, image rendering, display and printing systems, evaluation of image quality. Processing and Analysis - Image enhancement, restoration, segmentation, registration, multispectral, colour and texture processing, multiresolution processing and wavelets, morphological operations, stereoscopic and 3-D processing, motion detection and estimation, video and image sequence processing. Implementations and Architectures - Image and video processing hardware and software, design and construction, architectures and software, neural, adaptive, and fuzzy processing. Coding and Transmission - Image and video compression and coding, compression standards, noise modelling, visual information networks, streamed video. Retrieval and Multimedia - Storage of images and video, database design, image retrieval, video annotation and editing, mixed media incorporating visual information, multimedia systems and applications, image and video watermarking, steganography. Applications - Innovative application of image and video processing technologies to any field, including life sciences, earth sciences, astronomy, document processing and security. Current Special Issue Call for Papers: Evolutionary Computation for Image Processing - https://digital-library.theiet.org/files/IET_IPR_CFP_EC.pdf AI-Powered 3D Vision - https://digital-library.theiet.org/files/IET_IPR_CFP_AIPV.pdf Multidisciplinary advancement of Imaging Technologies: From Medical Diagnostics and Genomics to Cognitive Machine Vision, and Artificial Intelligence - https://digital-library.theiet.org/files/IET_IPR_CFP_IST.pdf Deep Learning for 3D Reconstruction - https://digital-library.theiet.org/files/IET_IPR_CFP_DLR.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信