Protein and DNA Conformational Changes Contribute to Specificity of Cre Recombinase

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jonathan S. Montgomery, Megan E. Judson and Mark P. Foster*, 
{"title":"Protein and DNA Conformational Changes Contribute to Specificity of Cre Recombinase","authors":"Jonathan S. Montgomery,&nbsp;Megan E. Judson and Mark P. Foster*,&nbsp;","doi":"10.1021/acs.biochem.4c0084110.1021/acs.biochem.4c00841","DOIUrl":null,"url":null,"abstract":"<p >Cre, a conservative site-specific tyrosine recombinase, is a powerful gene editing tool in the laboratory. Expanded applications in human health are hindered by a lack of understanding of the mechanism by which Cre selectively binds and recombines its cognate <i>loxP</i> sequences. This knowledge is essential for retargeting the enzyme to new sites and for mitigating the effects of off-target recombination. Prior studies have suggested that in addition to a few base-specific contacts to cognate <i>loxP</i> DNA, the enzyme’s specificity is enhanced by (1) autoinhibition involving a conformational change in the protein’s C-terminal helix and (2) indirect readout via binding-coupled conformational changes in the target DNA. We used isothermal titration calorimetry (ITC), circular dichroism (CD), and heteronuclear NMR spectroscopy to investigate DNA site recognition by wild-type Cre and a deletion mutant lacking the C-terminal helix. ITC of Cre and a C-terminal deletion variant against cognate and noncognate DNA recombinase binding elements (RBEs) reveal that the C-terminus reduces DNA binding affinity by 6-fold toward cognate DNA. Additionally, ITC revealed highly unfavorable binding enthalpy, which, when combined with evidence from CD and NMR of structural differences between cognate and noncognate complexes, supports a model in which binding-coupled DNA bending provides a unique structure-thermodynamic signature of cognate complexes. Together, these findings advance our understanding of site recognition by Cre recombinase.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":"64 5","pages":"1055–1064 1055–1064"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.biochem.4c00841","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cre, a conservative site-specific tyrosine recombinase, is a powerful gene editing tool in the laboratory. Expanded applications in human health are hindered by a lack of understanding of the mechanism by which Cre selectively binds and recombines its cognate loxP sequences. This knowledge is essential for retargeting the enzyme to new sites and for mitigating the effects of off-target recombination. Prior studies have suggested that in addition to a few base-specific contacts to cognate loxP DNA, the enzyme’s specificity is enhanced by (1) autoinhibition involving a conformational change in the protein’s C-terminal helix and (2) indirect readout via binding-coupled conformational changes in the target DNA. We used isothermal titration calorimetry (ITC), circular dichroism (CD), and heteronuclear NMR spectroscopy to investigate DNA site recognition by wild-type Cre and a deletion mutant lacking the C-terminal helix. ITC of Cre and a C-terminal deletion variant against cognate and noncognate DNA recombinase binding elements (RBEs) reveal that the C-terminus reduces DNA binding affinity by 6-fold toward cognate DNA. Additionally, ITC revealed highly unfavorable binding enthalpy, which, when combined with evidence from CD and NMR of structural differences between cognate and noncognate complexes, supports a model in which binding-coupled DNA bending provides a unique structure-thermodynamic signature of cognate complexes. Together, these findings advance our understanding of site recognition by Cre recombinase.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信