{"title":"IGFBP2 Promotes Proliferation and Glycolysis of Endometrial Cancer by Regulating PKM2/HIF-1α Axis","authors":"Yuxi Jin, Meng Qi, Lulu Si, Xiaojing Shi, Mingbo Cai, Hanlin Fu, Yana Liu, Ruixia Guo","doi":"10.1111/cas.16447","DOIUrl":null,"url":null,"abstract":"<p>Endometrial cancer (EC) is a worldwide gynecologic malignancies, with a remarking increase of incidence and mortality rates in recent years. Growing evidence indicates that glucose metabolism reprogramming is the most representative metabolic signature of tumor cells and exploring its modulatory function in EC development will promote identifying potential EC therapeutic targets. IGFBP2 is an insulin-like growth factor binding protein which is closely associated with a variety of metabolic diseases. However, its biological role in EC and its effects on glucose metabolism remain unclear. In this study, we demonstrated that IGFBP2 was highly expressed in EC tissues and correlated with poor prognosis. Overexpression of IGFBP2 promoted proliferation and glycolysis in EC cells, whereas IGFBP2 knockdown had the opposite effect. Mechanistically, IGFBP2 directly interacted with PKM2, inducing weakened PKM2 protein degradation, and knockdown IGFBP2 expression prevented the translocation of PKM2 to the nucleus. Additionally, IGFBP2 expression was upregulated under the condition of hypoxia which directly regulated by transcriptional activation of HIF-1α. Finally, the role of the IGFBP2/PKM2/HIF-1α axis in EC tumor growth was confirmed in vivo using mouse xenograft models. Taken together, the current study identifies IGFBP2 as an upstream activator of PKM2-driven proliferation and glycolysis in EC cells, providing a promising therapeutic target for EC.</p>","PeriodicalId":9580,"journal":{"name":"Cancer Science","volume":"116 3","pages":"656-672"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cas.16447","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Science","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cas.16447","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Endometrial cancer (EC) is a worldwide gynecologic malignancies, with a remarking increase of incidence and mortality rates in recent years. Growing evidence indicates that glucose metabolism reprogramming is the most representative metabolic signature of tumor cells and exploring its modulatory function in EC development will promote identifying potential EC therapeutic targets. IGFBP2 is an insulin-like growth factor binding protein which is closely associated with a variety of metabolic diseases. However, its biological role in EC and its effects on glucose metabolism remain unclear. In this study, we demonstrated that IGFBP2 was highly expressed in EC tissues and correlated with poor prognosis. Overexpression of IGFBP2 promoted proliferation and glycolysis in EC cells, whereas IGFBP2 knockdown had the opposite effect. Mechanistically, IGFBP2 directly interacted with PKM2, inducing weakened PKM2 protein degradation, and knockdown IGFBP2 expression prevented the translocation of PKM2 to the nucleus. Additionally, IGFBP2 expression was upregulated under the condition of hypoxia which directly regulated by transcriptional activation of HIF-1α. Finally, the role of the IGFBP2/PKM2/HIF-1α axis in EC tumor growth was confirmed in vivo using mouse xenograft models. Taken together, the current study identifies IGFBP2 as an upstream activator of PKM2-driven proliferation and glycolysis in EC cells, providing a promising therapeutic target for EC.
期刊介绍:
Cancer Science (formerly Japanese Journal of Cancer Research) is a monthly publication of the Japanese Cancer Association. First published in 1907, the Journal continues to publish original articles, editorials, and letters to the editor, describing original research in the fields of basic, translational and clinical cancer research. The Journal also accepts reports and case reports.
Cancer Science aims to present highly significant and timely findings that have a significant clinical impact on oncologists or that may alter the disease concept of a tumor. The Journal will not publish case reports that describe a rare tumor or condition without new findings to be added to previous reports; combination of different tumors without new suggestive findings for oncological research; remarkable effect of already known treatments without suggestive data to explain the exceptional result. Review articles may also be published.