A Two-Stage Energy-Efficiency Optimization Approach for Conflict-Free Dispatching in Open-Pit Mines

IF 2.5 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhichao Wang, Jue Yang, Yanbiao Feng, Yiting Kang, Yong Li
{"title":"A Two-Stage Energy-Efficiency Optimization Approach for Conflict-Free Dispatching in Open-Pit Mines","authors":"Zhichao Wang,&nbsp;Jue Yang,&nbsp;Yanbiao Feng,&nbsp;Yiting Kang,&nbsp;Yong Li","doi":"10.1049/itr2.70003","DOIUrl":null,"url":null,"abstract":"<p>The objective of this paper is to present a novel energy-efficiency conflict-free dispatching algorithm for autonomous mining fleets. In lieu of halting or decelerating the trucks at intersections when conflicts arise, the algorithm facilitates conflict-free dispatching for trucks to operate with the optimal speed trajectory, thereby achieving minimum fuel consumption and mining cost. This work first develops reference speed trajectories for mining trucks, considering their drivetrain characteristics, load status and geographic information pertaining to the path. Second, the total production determination model is based on the MILP model, which determines the total production of each path while taking the travel time into account with the objective of maximizing fleet production. Next, in the fleet allocation model and conflict-free scheduling model, the objectives are to reduce the fleet make span and fleet queuing time, respectively. Finally, a fleet operation timetable is eventually derived. Therefore, all trucks can operate intact according to the speed trajectory, thus minimizing fleet energy consumption and maximizing production efficiency. To verify the advantages of the model in this work, we selected DISPATCH and a multi-objective dispatching model developed by other researchers for comparison on the basis of the historical production data from an open pit coal mine. The results indicated that the proposed model exhibited the capacity to decrease the fleet size by 22.2%, thereby attaining equivalent production levels to those of a real open-pit coal mining fleet. Moreover, the model proposed in this paper can improve the production by about 36.11% to 49.75% compared to DISPATCH under the optimal speed trajectory, whereas the multi-objective dispatching model's improvement is only 9.84% to 21.89%. It also has significant advantages in terms of fleet productivity and fleet profit.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"19 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.70003","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/itr2.70003","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of this paper is to present a novel energy-efficiency conflict-free dispatching algorithm for autonomous mining fleets. In lieu of halting or decelerating the trucks at intersections when conflicts arise, the algorithm facilitates conflict-free dispatching for trucks to operate with the optimal speed trajectory, thereby achieving minimum fuel consumption and mining cost. This work first develops reference speed trajectories for mining trucks, considering their drivetrain characteristics, load status and geographic information pertaining to the path. Second, the total production determination model is based on the MILP model, which determines the total production of each path while taking the travel time into account with the objective of maximizing fleet production. Next, in the fleet allocation model and conflict-free scheduling model, the objectives are to reduce the fleet make span and fleet queuing time, respectively. Finally, a fleet operation timetable is eventually derived. Therefore, all trucks can operate intact according to the speed trajectory, thus minimizing fleet energy consumption and maximizing production efficiency. To verify the advantages of the model in this work, we selected DISPATCH and a multi-objective dispatching model developed by other researchers for comparison on the basis of the historical production data from an open pit coal mine. The results indicated that the proposed model exhibited the capacity to decrease the fleet size by 22.2%, thereby attaining equivalent production levels to those of a real open-pit coal mining fleet. Moreover, the model proposed in this paper can improve the production by about 36.11% to 49.75% compared to DISPATCH under the optimal speed trajectory, whereas the multi-objective dispatching model's improvement is only 9.84% to 21.89%. It also has significant advantages in terms of fleet productivity and fleet profit.

Abstract Image

Abstract Image

Abstract Image

露天矿无冲突调度的两阶段能效优化方法
本文的目标是提出一种新的节能无冲突的自主采矿船队调度算法。该算法在发生冲突时,不需要在十字路口停车或减速,而是实现无冲突调度,使货车以最优速度轨迹运行,从而实现最小的油耗和采矿成本。这项工作首先开发了采矿卡车的参考速度轨迹,考虑了它们的传动系统特性、负载状态和与路径相关的地理信息。其次,总产量确定模型基于MILP模型,以车队产量最大化为目标,在考虑行程时间的情况下确定每条路径的总产量。其次,在车队分配模型和无冲突调度模型中,目标分别是减少车队制造时间和车队排队时间。最后,得出了机队运行时间表。因此,所有卡车都可以按照速度轨迹完整运行,从而最大限度地减少车队能耗,最大限度地提高生产效率。为了验证该模型在本工作中的优势,我们以某露天煤矿的历史生产数据为基础,选择DISPATCH模型与其他研究人员开发的多目标调度模型进行比较。结果表明,该模型能够将船队规模减少22.2%,从而达到与实际露天采煤船队相当的生产水平。在最优速度轨迹下,与DISPATCH相比,本文模型的生产率提高了36.11% ~ 49.75%,而多目标调度模型的生产率提高仅为9.84% ~ 21.89%。它在车队生产力和车队利润方面也具有显著的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Intelligent Transport Systems
IET Intelligent Transport Systems 工程技术-运输科技
CiteScore
6.50
自引率
7.40%
发文量
159
审稿时长
3 months
期刊介绍: IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following: Sustainable traffic solutions Deployments with enabling technologies Pervasive monitoring Applications; demonstrations and evaluation Economic and behavioural analyses of ITS services and scenario Data Integration and analytics Information collection and processing; image processing applications in ITS ITS aspects of electric vehicles Autonomous vehicles; connected vehicle systems; In-vehicle ITS, safety and vulnerable road user aspects Mobility as a service systems Traffic management and control Public transport systems technologies Fleet and public transport logistics Emergency and incident management Demand management and electronic payment systems Traffic related air pollution management Policy and institutional issues Interoperability, standards and architectures Funding scenarios Enforcement Human machine interaction Education, training and outreach Current Special Issue Call for papers: Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信