{"title":"BF-ACS—Intelligent and Immutable Face Recognition Access Control System","authors":"Wen-Bin Hsieh","doi":"10.1049/ise2/6755170","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Biometric authentication is adopted in many access control scenarios in recent years. It is very convenient and secure since it compares the user’s own biometrics with those stored in the database to confirm their identification. Since then, with the vigorous development of machine learning, the performance and accuracy of biometric authentication have been greatly improved. Face recognition technology combined with convolutional neural network (CNN) is extremely efficient and has become the mainstream of access control systems (ACSs). However, identity information and access logs stored in traditional databases can be tampered by malicious insiders. Therefore, we propose a face recognition ACS that is resistant to data forgery. In this paper, a deep convolutional network is utilized to learn Euclidean embedding (based on FaceNet) of each image and achieve face recognition and verification. Quorum, which is built on the Ethereum blockchain, is used to store facial feature vectors and login information. Smart contracts are made to automatically put data into blocks on the chain. One is used to store feature vectors, and the other to record the arrival and departure times of employees. By combining these cutting-edge technologies, an intelligent and immutable ACS that can withstand distributed denial-of-service (DDoS) and other internal and external attacks is created. Finally, an experiment is conducted to assess the effectiveness of the proposed system to demonstrate its practicality.</p>\n </div>","PeriodicalId":50380,"journal":{"name":"IET Information Security","volume":"2025 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ise2/6755170","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Information Security","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ise2/6755170","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Biometric authentication is adopted in many access control scenarios in recent years. It is very convenient and secure since it compares the user’s own biometrics with those stored in the database to confirm their identification. Since then, with the vigorous development of machine learning, the performance and accuracy of biometric authentication have been greatly improved. Face recognition technology combined with convolutional neural network (CNN) is extremely efficient and has become the mainstream of access control systems (ACSs). However, identity information and access logs stored in traditional databases can be tampered by malicious insiders. Therefore, we propose a face recognition ACS that is resistant to data forgery. In this paper, a deep convolutional network is utilized to learn Euclidean embedding (based on FaceNet) of each image and achieve face recognition and verification. Quorum, which is built on the Ethereum blockchain, is used to store facial feature vectors and login information. Smart contracts are made to automatically put data into blocks on the chain. One is used to store feature vectors, and the other to record the arrival and departure times of employees. By combining these cutting-edge technologies, an intelligent and immutable ACS that can withstand distributed denial-of-service (DDoS) and other internal and external attacks is created. Finally, an experiment is conducted to assess the effectiveness of the proposed system to demonstrate its practicality.
期刊介绍:
IET Information Security publishes original research papers in the following areas of information security and cryptography. Submitting authors should specify clearly in their covering statement the area into which their paper falls.
Scope:
Access Control and Database Security
Ad-Hoc Network Aspects
Anonymity and E-Voting
Authentication
Block Ciphers and Hash Functions
Blockchain, Bitcoin (Technical aspects only)
Broadcast Encryption and Traitor Tracing
Combinatorial Aspects
Covert Channels and Information Flow
Critical Infrastructures
Cryptanalysis
Dependability
Digital Rights Management
Digital Signature Schemes
Digital Steganography
Economic Aspects of Information Security
Elliptic Curve Cryptography and Number Theory
Embedded Systems Aspects
Embedded Systems Security and Forensics
Financial Cryptography
Firewall Security
Formal Methods and Security Verification
Human Aspects
Information Warfare and Survivability
Intrusion Detection
Java and XML Security
Key Distribution
Key Management
Malware
Multi-Party Computation and Threshold Cryptography
Peer-to-peer Security
PKIs
Public-Key and Hybrid Encryption
Quantum Cryptography
Risks of using Computers
Robust Networks
Secret Sharing
Secure Electronic Commerce
Software Obfuscation
Stream Ciphers
Trust Models
Watermarking and Fingerprinting
Special Issues. Current Call for Papers:
Security on Mobile and IoT devices - https://digital-library.theiet.org/files/IET_IFS_SMID_CFP.pdf