Using Homomorphic Proxy Re-Encryption to Enhance Security and Privacy of Federated Learning-Based Intelligent Connected Vehicles

IF 1.3 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yang Bai, Yutang Rao, Hongyan Wu, Juan Wang, Wentao Yang, Gaojie Xing, Jiawei Yang, Xiaoshu Yuan
{"title":"Using Homomorphic Proxy Re-Encryption to Enhance Security and Privacy of Federated Learning-Based Intelligent Connected Vehicles","authors":"Yang Bai,&nbsp;Yutang Rao,&nbsp;Hongyan Wu,&nbsp;Juan Wang,&nbsp;Wentao Yang,&nbsp;Gaojie Xing,&nbsp;Jiawei Yang,&nbsp;Xiaoshu Yuan","doi":"10.1049/ise2/4632786","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Intelligent connected vehicles (ICVs) are one of the fast-growing directions that plays a significant role in the area of autonomous driving. To realize collaborative computation among ICVs, federated learning (FL) or federated-based large language model (FedLLM) as a promising distributed approach has been used to support various collaborative application computations in ICVs scenarios, for example, analyzing vehicle driving information to realize trajectory prediction, voice-activated controls, conversational AI assistants. Unfortunately, recent research reveals that FL systems are still faced with privacy challenges from honest-but-curious server, honest-but-curious distributed participants, or the collusion between participants and the server. These threats can lead to the leakage of sensitive private data, such as location information and driving conditions. Homomorphic encryption (HE) is one of the typical mitigation that has few effects on the model accuracy and has been studied before. However, single-key HE cannot resist collusion between participants and the server, multikey HE is not suitable for ICVs scenarios. In this work, we proposed a novel approach that combines FL with homomorphic proxy re-encryption (PRE) which is based on participants’ ID information. By doing so, the FL-based ICVs can be able to successfully defend against privacy threats. In addition, we analyze the security and performance of our method, and the theoretical analysis and the experiment results show that our defense framework with ID-based homomorphic PRE can achieve a high-security level and efficient computation. We anticipate that our approach can serve as a fundamental point to support the extensive research on FedLLMs privacy-preserving.</p>\n </div>","PeriodicalId":50380,"journal":{"name":"IET Information Security","volume":"2025 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ise2/4632786","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Information Security","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ise2/4632786","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Intelligent connected vehicles (ICVs) are one of the fast-growing directions that plays a significant role in the area of autonomous driving. To realize collaborative computation among ICVs, federated learning (FL) or federated-based large language model (FedLLM) as a promising distributed approach has been used to support various collaborative application computations in ICVs scenarios, for example, analyzing vehicle driving information to realize trajectory prediction, voice-activated controls, conversational AI assistants. Unfortunately, recent research reveals that FL systems are still faced with privacy challenges from honest-but-curious server, honest-but-curious distributed participants, or the collusion between participants and the server. These threats can lead to the leakage of sensitive private data, such as location information and driving conditions. Homomorphic encryption (HE) is one of the typical mitigation that has few effects on the model accuracy and has been studied before. However, single-key HE cannot resist collusion between participants and the server, multikey HE is not suitable for ICVs scenarios. In this work, we proposed a novel approach that combines FL with homomorphic proxy re-encryption (PRE) which is based on participants’ ID information. By doing so, the FL-based ICVs can be able to successfully defend against privacy threats. In addition, we analyze the security and performance of our method, and the theoretical analysis and the experiment results show that our defense framework with ID-based homomorphic PRE can achieve a high-security level and efficient computation. We anticipate that our approach can serve as a fundamental point to support the extensive research on FedLLMs privacy-preserving.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Information Security
IET Information Security 工程技术-计算机:理论方法
CiteScore
3.80
自引率
7.10%
发文量
47
审稿时长
8.6 months
期刊介绍: IET Information Security publishes original research papers in the following areas of information security and cryptography. Submitting authors should specify clearly in their covering statement the area into which their paper falls. Scope: Access Control and Database Security Ad-Hoc Network Aspects Anonymity and E-Voting Authentication Block Ciphers and Hash Functions Blockchain, Bitcoin (Technical aspects only) Broadcast Encryption and Traitor Tracing Combinatorial Aspects Covert Channels and Information Flow Critical Infrastructures Cryptanalysis Dependability Digital Rights Management Digital Signature Schemes Digital Steganography Economic Aspects of Information Security Elliptic Curve Cryptography and Number Theory Embedded Systems Aspects Embedded Systems Security and Forensics Financial Cryptography Firewall Security Formal Methods and Security Verification Human Aspects Information Warfare and Survivability Intrusion Detection Java and XML Security Key Distribution Key Management Malware Multi-Party Computation and Threshold Cryptography Peer-to-peer Security PKIs Public-Key and Hybrid Encryption Quantum Cryptography Risks of using Computers Robust Networks Secret Sharing Secure Electronic Commerce Software Obfuscation Stream Ciphers Trust Models Watermarking and Fingerprinting Special Issues. Current Call for Papers: Security on Mobile and IoT devices - https://digital-library.theiet.org/files/IET_IFS_SMID_CFP.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信