Yang Bai, Yutang Rao, Hongyan Wu, Juan Wang, Wentao Yang, Gaojie Xing, Jiawei Yang, Xiaoshu Yuan
{"title":"Using Homomorphic Proxy Re-Encryption to Enhance Security and Privacy of Federated Learning-Based Intelligent Connected Vehicles","authors":"Yang Bai, Yutang Rao, Hongyan Wu, Juan Wang, Wentao Yang, Gaojie Xing, Jiawei Yang, Xiaoshu Yuan","doi":"10.1049/ise2/4632786","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Intelligent connected vehicles (ICVs) are one of the fast-growing directions that plays a significant role in the area of autonomous driving. To realize collaborative computation among ICVs, federated learning (FL) or federated-based large language model (FedLLM) as a promising distributed approach has been used to support various collaborative application computations in ICVs scenarios, for example, analyzing vehicle driving information to realize trajectory prediction, voice-activated controls, conversational AI assistants. Unfortunately, recent research reveals that FL systems are still faced with privacy challenges from honest-but-curious server, honest-but-curious distributed participants, or the collusion between participants and the server. These threats can lead to the leakage of sensitive private data, such as location information and driving conditions. Homomorphic encryption (HE) is one of the typical mitigation that has few effects on the model accuracy and has been studied before. However, single-key HE cannot resist collusion between participants and the server, multikey HE is not suitable for ICVs scenarios. In this work, we proposed a novel approach that combines FL with homomorphic proxy re-encryption (PRE) which is based on participants’ ID information. By doing so, the FL-based ICVs can be able to successfully defend against privacy threats. In addition, we analyze the security and performance of our method, and the theoretical analysis and the experiment results show that our defense framework with ID-based homomorphic PRE can achieve a high-security level and efficient computation. We anticipate that our approach can serve as a fundamental point to support the extensive research on FedLLMs privacy-preserving.</p>\n </div>","PeriodicalId":50380,"journal":{"name":"IET Information Security","volume":"2025 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ise2/4632786","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Information Security","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ise2/4632786","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Intelligent connected vehicles (ICVs) are one of the fast-growing directions that plays a significant role in the area of autonomous driving. To realize collaborative computation among ICVs, federated learning (FL) or federated-based large language model (FedLLM) as a promising distributed approach has been used to support various collaborative application computations in ICVs scenarios, for example, analyzing vehicle driving information to realize trajectory prediction, voice-activated controls, conversational AI assistants. Unfortunately, recent research reveals that FL systems are still faced with privacy challenges from honest-but-curious server, honest-but-curious distributed participants, or the collusion between participants and the server. These threats can lead to the leakage of sensitive private data, such as location information and driving conditions. Homomorphic encryption (HE) is one of the typical mitigation that has few effects on the model accuracy and has been studied before. However, single-key HE cannot resist collusion between participants and the server, multikey HE is not suitable for ICVs scenarios. In this work, we proposed a novel approach that combines FL with homomorphic proxy re-encryption (PRE) which is based on participants’ ID information. By doing so, the FL-based ICVs can be able to successfully defend against privacy threats. In addition, we analyze the security and performance of our method, and the theoretical analysis and the experiment results show that our defense framework with ID-based homomorphic PRE can achieve a high-security level and efficient computation. We anticipate that our approach can serve as a fundamental point to support the extensive research on FedLLMs privacy-preserving.
期刊介绍:
IET Information Security publishes original research papers in the following areas of information security and cryptography. Submitting authors should specify clearly in their covering statement the area into which their paper falls.
Scope:
Access Control and Database Security
Ad-Hoc Network Aspects
Anonymity and E-Voting
Authentication
Block Ciphers and Hash Functions
Blockchain, Bitcoin (Technical aspects only)
Broadcast Encryption and Traitor Tracing
Combinatorial Aspects
Covert Channels and Information Flow
Critical Infrastructures
Cryptanalysis
Dependability
Digital Rights Management
Digital Signature Schemes
Digital Steganography
Economic Aspects of Information Security
Elliptic Curve Cryptography and Number Theory
Embedded Systems Aspects
Embedded Systems Security and Forensics
Financial Cryptography
Firewall Security
Formal Methods and Security Verification
Human Aspects
Information Warfare and Survivability
Intrusion Detection
Java and XML Security
Key Distribution
Key Management
Malware
Multi-Party Computation and Threshold Cryptography
Peer-to-peer Security
PKIs
Public-Key and Hybrid Encryption
Quantum Cryptography
Risks of using Computers
Robust Networks
Secret Sharing
Secure Electronic Commerce
Software Obfuscation
Stream Ciphers
Trust Models
Watermarking and Fingerprinting
Special Issues. Current Call for Papers:
Security on Mobile and IoT devices - https://digital-library.theiet.org/files/IET_IFS_SMID_CFP.pdf