Abdelghani El Houri, Ayyoub El Mouatasim, Aziz Khribach, Brahim Adnane, Younes Moqine, Rachid Houça, Abdellatif Kamal, Abdelhadi Belouad
{"title":"Quantum teleportation via thermal entanglement in squeezed spin states","authors":"Abdelghani El Houri, Ayyoub El Mouatasim, Aziz Khribach, Brahim Adnane, Younes Moqine, Rachid Houça, Abdellatif Kamal, Abdelhadi Belouad","doi":"10.1007/s11128-025-04668-y","DOIUrl":null,"url":null,"abstract":"<div><p>This article investigates thermal entanglement and quantum teleportation in a bipartite system composed of two spin-<span>\\(\\frac{1}{2}\\)</span> qubits, exposed to an external magnetic field along the <i>Z</i>-axis, within the framework of the squeezed spin model. We employ concurrence to quantify both the thermal entanglement in our system and the entanglement of the replicated output state in a quantum teleportation protocol through this system. Thus, we adopt fidelity to evaluate the quality of teleportation. It is shown that at the system’s ground state, a pure state favors maximal entanglement, while a mixed state leads to an absence of entanglement regardless of the magnetic field. At very low temperatures, increasing the magnetic field induces transitions from the entangled state to a separable state, but this transition is modulated by the intensity of interactions in the <i>XY</i>-plane. The intensities of interactions along the X- and Y-axes are studied to understand their effect on the system’s entanglement. Two spin squeezing mechanisms, one-axis twisting and two-axis counter twisting, are compared, revealing that two-axis counter twisting offers better entanglement. Finally, we explore quantum teleportation through squeezed spin states, demonstrating its feasibility with high fidelity at high temperatures and without a magnetic field, provided that the intensities of interactions in the <i>XY</i>-plane are negligible. By increasing the intensities <span>\\(\\mu \\)</span> and <span>\\(\\chi \\)</span>, fidelity improves. Intriguingly, our analysis suggests that quantum teleportation, with increased fidelity, is achievable only with the one-axis twisting spin squeezing mechanism, remaining out of reach for two-axis counter twisting.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04668-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This article investigates thermal entanglement and quantum teleportation in a bipartite system composed of two spin-\(\frac{1}{2}\) qubits, exposed to an external magnetic field along the Z-axis, within the framework of the squeezed spin model. We employ concurrence to quantify both the thermal entanglement in our system and the entanglement of the replicated output state in a quantum teleportation protocol through this system. Thus, we adopt fidelity to evaluate the quality of teleportation. It is shown that at the system’s ground state, a pure state favors maximal entanglement, while a mixed state leads to an absence of entanglement regardless of the magnetic field. At very low temperatures, increasing the magnetic field induces transitions from the entangled state to a separable state, but this transition is modulated by the intensity of interactions in the XY-plane. The intensities of interactions along the X- and Y-axes are studied to understand their effect on the system’s entanglement. Two spin squeezing mechanisms, one-axis twisting and two-axis counter twisting, are compared, revealing that two-axis counter twisting offers better entanglement. Finally, we explore quantum teleportation through squeezed spin states, demonstrating its feasibility with high fidelity at high temperatures and without a magnetic field, provided that the intensities of interactions in the XY-plane are negligible. By increasing the intensities \(\mu \) and \(\chi \), fidelity improves. Intriguingly, our analysis suggests that quantum teleportation, with increased fidelity, is achievable only with the one-axis twisting spin squeezing mechanism, remaining out of reach for two-axis counter twisting.
期刊介绍:
Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.