Exploring microstructures and anisotropies of serpentinites

IF 3.5 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Hans-Rudolf Wenk, Amartya Kattemalavadi, Yiming Zhang, Ellis R. Kennedy, Olaf Borkiewicz
{"title":"Exploring microstructures and anisotropies of serpentinites","authors":"Hans-Rudolf Wenk,&nbsp;Amartya Kattemalavadi,&nbsp;Yiming Zhang,&nbsp;Ellis R. Kennedy,&nbsp;Olaf Borkiewicz","doi":"10.1007/s00410-025-02209-5","DOIUrl":null,"url":null,"abstract":"<div><p>Serpentine minerals have received a lot of attention because of their unique crystal structures, their wide occurrence in orogenic belts and their potential role in contributing seismic anisotropy in subducting slabs. Several studies have investigated crystal preferred orientation (CPO) in high temperature antigorite serpentinites from Japan, the Alps, Spain, Cuba and Tibet, documenting significant crystal alignment. However, only a limited number of lower grade serpentines have been explored to date. Mainly because of submicroscopic microstructural heterogeneities CPO cannot be measured with conventional methods such as optical microscopy and EBSD. In this study 15 serpentinites from different tectonic settings in California, the Central Alps and Northern Spain have been investigated, mainly with high energy synchrotron X-ray diffraction, to quantify bulk crystal alignment. We find that CPO is strong on sheared surfaces of fractured blocks and secondary veins but the bulk of most serpentinite samples, except high-grade recrystallized antigorite serpentinite, show only weak crystal alignment. Correspondingly calculated seismic anisotropy based on CPO is not very significant. This is supported by very heterogeneous microstructures as documented with SEM and TEM analyses.</p></div>","PeriodicalId":526,"journal":{"name":"Contributions to Mineralogy and Petrology","volume":"180 3","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00410-025-02209-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Mineralogy and Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00410-025-02209-5","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Serpentine minerals have received a lot of attention because of their unique crystal structures, their wide occurrence in orogenic belts and their potential role in contributing seismic anisotropy in subducting slabs. Several studies have investigated crystal preferred orientation (CPO) in high temperature antigorite serpentinites from Japan, the Alps, Spain, Cuba and Tibet, documenting significant crystal alignment. However, only a limited number of lower grade serpentines have been explored to date. Mainly because of submicroscopic microstructural heterogeneities CPO cannot be measured with conventional methods such as optical microscopy and EBSD. In this study 15 serpentinites from different tectonic settings in California, the Central Alps and Northern Spain have been investigated, mainly with high energy synchrotron X-ray diffraction, to quantify bulk crystal alignment. We find that CPO is strong on sheared surfaces of fractured blocks and secondary veins but the bulk of most serpentinite samples, except high-grade recrystallized antigorite serpentinite, show only weak crystal alignment. Correspondingly calculated seismic anisotropy based on CPO is not very significant. This is supported by very heterogeneous microstructures as documented with SEM and TEM analyses.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Contributions to Mineralogy and Petrology
Contributions to Mineralogy and Petrology 地学-地球化学与地球物理
CiteScore
6.50
自引率
5.70%
发文量
94
审稿时长
1.7 months
期刊介绍: Contributions to Mineralogy and Petrology is an international journal that accepts high quality research papers in the fields of igneous and metamorphic petrology, geochemistry and mineralogy. Topics of interest include: major element, trace element and isotope geochemistry, geochronology, experimental petrology, igneous and metamorphic petrology, mineralogy, major and trace element mineral chemistry and thermodynamic modeling of petrologic and geochemical processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信