Ramsey-Bordé atom interferometry with a thermal strontium beam for a compact optical clock

IF 5.8 2区 物理与天体物理 Q1 OPTICS
Oliver Fartmann, Martin Jutisz, Amir Mahdian, Vladimir Schkolnik, Ingmari C. Tietje, Conrad Zimmermann, Markus Krutzik
{"title":"Ramsey-Bordé atom interferometry with a thermal strontium beam for a compact optical clock","authors":"Oliver Fartmann,&nbsp;Martin Jutisz,&nbsp;Amir Mahdian,&nbsp;Vladimir Schkolnik,&nbsp;Ingmari C. Tietje,&nbsp;Conrad Zimmermann,&nbsp;Markus Krutzik","doi":"10.1140/epjqt/s40507-025-00332-7","DOIUrl":null,"url":null,"abstract":"<div><p>Compact optical atomic clocks have become increasingly important in field applications and clock networks. Systems based on Ramsey-Bordé interferometry (RBI) with a thermal atomic beam seem promising to fill a technology gap in optical atomic clocks, as they offer higher stability than optical vapour cell clocks while being less complex than cold atomic clocks.</p><p>Here, we demonstrate RBI with strontium atoms, utilizing the narrow <img> intercombination line at 689 nm, yielding a 60 kHz broad spectral feature. The obtained Ramsey fringes for varying laser power are analyzed and compared with a numerical model. The <img> transition at 461 nm is used for fluorescence detection. Analyzing the slope of the RBI signal and the fluorescence detection noise yields an estimated short-term stability of <span>\\(&lt;4\\times 10^{-14} / \\sqrt{\\tau / {1~s}}\\)</span>. We present our experimental setup in detail, including the atomic beam source, frequency-modulation spectroscopy to lock the 461 nm laser, laser power stabilization and the high-finesse cavity pre-stabilization of the 689 nm laser.</p><p>Our system serves as a ground testbed for future clock systems in mobile and space applications.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00332-7","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00332-7","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Compact optical atomic clocks have become increasingly important in field applications and clock networks. Systems based on Ramsey-Bordé interferometry (RBI) with a thermal atomic beam seem promising to fill a technology gap in optical atomic clocks, as they offer higher stability than optical vapour cell clocks while being less complex than cold atomic clocks.

Here, we demonstrate RBI with strontium atoms, utilizing the narrow intercombination line at 689 nm, yielding a 60 kHz broad spectral feature. The obtained Ramsey fringes for varying laser power are analyzed and compared with a numerical model. The transition at 461 nm is used for fluorescence detection. Analyzing the slope of the RBI signal and the fluorescence detection noise yields an estimated short-term stability of \(<4\times 10^{-14} / \sqrt{\tau / {1~s}}\). We present our experimental setup in detail, including the atomic beam source, frequency-modulation spectroscopy to lock the 461 nm laser, laser power stabilization and the high-finesse cavity pre-stabilization of the 689 nm laser.

Our system serves as a ground testbed for future clock systems in mobile and space applications.

紧凑型光学原子钟在现场应用和时钟网络中变得越来越重要。基于热原子束拉姆齐-波代干涉测量法(RBI)的系统似乎很有希望填补光学原子钟的技术空白,因为它们比光学汽室钟具有更高的稳定性,同时又没有冷原子钟那么复杂。我们对不同激光功率下获得的拉姆齐条纹进行了分析,并与数值模型进行了比较。461 nm 处的转变用于荧光检测。通过分析 RBI 信号的斜率和荧光检测噪声,可以估计出短期稳定性为 \(<4\times 10^{-14} / \sqrt{\tau / {1~s}}\)。我们详细介绍了实验装置,包括原子束源、锁定 461 nm 激光的调频光谱、激光功率稳定以及 689 nm 激光的高精细腔预稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信