Nanostructured liquid-crystalline ion conductors based on linear carbonate moieties: effects of oligooxyethylene and alkylene spacers on self-assembled properties and ionic conductivities†

IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL
Junya Uchida, Shingo Takegawa, Soshi Ito, Shunsuke Sato, Go Watanabe and Takashi Kato
{"title":"Nanostructured liquid-crystalline ion conductors based on linear carbonate moieties: effects of oligooxyethylene and alkylene spacers on self-assembled properties and ionic conductivities†","authors":"Junya Uchida, Shingo Takegawa, Soshi Ito, Shunsuke Sato, Go Watanabe and Takashi Kato","doi":"10.1039/D4ME00176A","DOIUrl":null,"url":null,"abstract":"<p >We here report rodlike liquid-crystalline (LC) molecules consisting of bicyclohexyl and linear carbonate moieties connected through flexible spacers for the development of nanostructured ion-conductive materials. The molecular assemblies of the linear carbonate-based rodlike compounds mixed with a lithium salt provide 2D ion-conductive pathways in the smectic LC phases. The LC materials containing polar oligooxyethylene spacers coupled with linear carbonate moieties have been shown to function as efficient ion conductors, while those containing nonpolar alkylene spacers form thermally stable and ordered smectic LC structures. Molecular dynamics simulations provide insights into the conformation and packing of the molecules containing oligooxyethylene spacers in the LC phases. The combination of flexible oligooxyethylene chains and linear carbonates may lead to design of new LC electrolytes with highly mobile 2D nanochannels for applications in energy devices.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 3","pages":" 184-193"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/me/d4me00176a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Design & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/me/d4me00176a","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We here report rodlike liquid-crystalline (LC) molecules consisting of bicyclohexyl and linear carbonate moieties connected through flexible spacers for the development of nanostructured ion-conductive materials. The molecular assemblies of the linear carbonate-based rodlike compounds mixed with a lithium salt provide 2D ion-conductive pathways in the smectic LC phases. The LC materials containing polar oligooxyethylene spacers coupled with linear carbonate moieties have been shown to function as efficient ion conductors, while those containing nonpolar alkylene spacers form thermally stable and ordered smectic LC structures. Molecular dynamics simulations provide insights into the conformation and packing of the molecules containing oligooxyethylene spacers in the LC phases. The combination of flexible oligooxyethylene chains and linear carbonates may lead to design of new LC electrolytes with highly mobile 2D nanochannels for applications in energy devices.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Systems Design & Engineering
Molecular Systems Design & Engineering Engineering-Biomedical Engineering
CiteScore
6.40
自引率
2.80%
发文量
144
期刊介绍: Molecular Systems Design & Engineering provides a hub for cutting-edge research into how understanding of molecular properties, behaviour and interactions can be used to design and assemble better materials, systems, and processes to achieve specific functions. These may have applications of technological significance and help address global challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信