Pino D’Amico , Alessandra Catellani , Alice Ruini , Stefano Curtarolo , Marco Fornari , Marco Buongiorno Nardelli , Arrigo Calzolari
{"title":"Magnetic transparent conductors for spintronic applications","authors":"Pino D’Amico , Alessandra Catellani , Alice Ruini , Stefano Curtarolo , Marco Fornari , Marco Buongiorno Nardelli , Arrigo Calzolari","doi":"10.1016/j.actamat.2025.120850","DOIUrl":null,"url":null,"abstract":"<div><div>Transparent Conductors (TCs) exhibit optical transparency and electron conductivity, and are essential for many opto-electronic and photo-voltaic devices. The most common TCs are electron-doped oxides, which are limited in the choice of possible dopants, as transitions metals most often are not suitable, in view of their tendency to form strong bond with oxygen. Non-oxides TCs have the potential of extending the class of materials to the magnetic realm, bypass technological bottlenecks, and bring TCs to the field of spintronics. Here we propose new functional materials that combine transparency and conductivity with magnetic spin polarization that can be used for spintronic applications, such as spin filters. By using high-throughput first-principles techniques, we identified a large number of potential TCs, including non-oxides materials. Our results indicate that proper doping with transition metals introduces a finite magnetization that can provide spin filtering up to 90% in the electrical conductivity, still maintaining a transparency greater than 90%.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"289 ","pages":"Article 120850"},"PeriodicalIF":8.3000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425001429","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Transparent Conductors (TCs) exhibit optical transparency and electron conductivity, and are essential for many opto-electronic and photo-voltaic devices. The most common TCs are electron-doped oxides, which are limited in the choice of possible dopants, as transitions metals most often are not suitable, in view of their tendency to form strong bond with oxygen. Non-oxides TCs have the potential of extending the class of materials to the magnetic realm, bypass technological bottlenecks, and bring TCs to the field of spintronics. Here we propose new functional materials that combine transparency and conductivity with magnetic spin polarization that can be used for spintronic applications, such as spin filters. By using high-throughput first-principles techniques, we identified a large number of potential TCs, including non-oxides materials. Our results indicate that proper doping with transition metals introduces a finite magnetization that can provide spin filtering up to 90% in the electrical conductivity, still maintaining a transparency greater than 90%.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.