Stephen Jun Fei Chong, Junyan Lu, Rebecca Valentin, Timothy Z. Lehmberg, Jie Qing Eu, Jing Wang, Fen Zhu, Li Ren Kong, Stacey M. Fernandes, Jeremy Zhang, Charles Herbaux, Boon Cher Goh, Jennifer R. Brown, Carsten U. Niemann, Wolfgang Huber, Thorsten Zenz, Matthew S. Davids
{"title":"BCL-2 dependence is a favorable predictive marker of response to therapy for chronic lymphocytic leukemia","authors":"Stephen Jun Fei Chong, Junyan Lu, Rebecca Valentin, Timothy Z. Lehmberg, Jie Qing Eu, Jing Wang, Fen Zhu, Li Ren Kong, Stacey M. Fernandes, Jeremy Zhang, Charles Herbaux, Boon Cher Goh, Jennifer R. Brown, Carsten U. Niemann, Wolfgang Huber, Thorsten Zenz, Matthew S. Davids","doi":"10.1186/s12943-025-02260-7","DOIUrl":null,"url":null,"abstract":"Established genetic biomarkers in chronic lymphocytic leukemia (CLL) have been useful in predicting response to chemoimmunotherapy but are less predictive of response to targeted therapies. With several such targeted therapies now approved for CLL, identifying novel, non-genetic predictive biomarkers of response may help to select the optimal therapy for individual patients. We coupled data from a functional precision medicine technique called BH3-profiling, which assesses cellular cytochrome c loss levels as indicators for survival dependence on anti-apoptotic proteins, with multi-omics data consisting of targeted and whole-exome sequencing, genome-wide DNA methylation profiles, RNA-sequencing, protein and functional analyses, to identify biomarkers for treatment response in CLL patients. We initially studied 73 CLL patients from a discovery cohort. We found that greater dependence on the anti-apoptotic BCL-2 protein was associated with prognostically favorable genetic biomarkers. Furthermore, BCL-2 dependence was strongly associated with gene expression patterns and signaling pathways that suggest a more targeted drug-sensitive milieu and was predictive of drug responses. We subsequently demonstrated that these associations were causal in cell lines and additional CLL patient samples. To validate the findings from our discovery cohort and in vitro studies, we utilized primary CLL cells from 54 additional patients treated on a prospective, phase-2 clinical trial of the BTK inhibitor ibrutinib given in combination with chemoimmunotherapy (fludarabine, cyclophosphamide, rituximab) and confirmed in this independent dataset that higher BCL-2 dependence predicted favorable clinical response, independent of the genetic background of the CLL cells. We comprehensively defined BCL-2 dependence as a potential functional and predictive biomarker of treatment response in CLL, underscoring the importance of characterizing apoptotic signaling in CLL to stratify patients beyond genetic markers and identifying novel combinations to exploit BCL-2 dependence therapeutically. Our approach has the potential to help optimize targeted therapy combinations for CLL patients. ","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"23 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12943-025-02260-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Established genetic biomarkers in chronic lymphocytic leukemia (CLL) have been useful in predicting response to chemoimmunotherapy but are less predictive of response to targeted therapies. With several such targeted therapies now approved for CLL, identifying novel, non-genetic predictive biomarkers of response may help to select the optimal therapy for individual patients. We coupled data from a functional precision medicine technique called BH3-profiling, which assesses cellular cytochrome c loss levels as indicators for survival dependence on anti-apoptotic proteins, with multi-omics data consisting of targeted and whole-exome sequencing, genome-wide DNA methylation profiles, RNA-sequencing, protein and functional analyses, to identify biomarkers for treatment response in CLL patients. We initially studied 73 CLL patients from a discovery cohort. We found that greater dependence on the anti-apoptotic BCL-2 protein was associated with prognostically favorable genetic biomarkers. Furthermore, BCL-2 dependence was strongly associated with gene expression patterns and signaling pathways that suggest a more targeted drug-sensitive milieu and was predictive of drug responses. We subsequently demonstrated that these associations were causal in cell lines and additional CLL patient samples. To validate the findings from our discovery cohort and in vitro studies, we utilized primary CLL cells from 54 additional patients treated on a prospective, phase-2 clinical trial of the BTK inhibitor ibrutinib given in combination with chemoimmunotherapy (fludarabine, cyclophosphamide, rituximab) and confirmed in this independent dataset that higher BCL-2 dependence predicted favorable clinical response, independent of the genetic background of the CLL cells. We comprehensively defined BCL-2 dependence as a potential functional and predictive biomarker of treatment response in CLL, underscoring the importance of characterizing apoptotic signaling in CLL to stratify patients beyond genetic markers and identifying novel combinations to exploit BCL-2 dependence therapeutically. Our approach has the potential to help optimize targeted therapy combinations for CLL patients.
期刊介绍:
Molecular Cancer is a platform that encourages the exchange of ideas and discoveries in the field of cancer research, particularly focusing on the molecular aspects. Our goal is to facilitate discussions and provide insights into various areas of cancer and related biomedical science. We welcome articles from basic, translational, and clinical research that contribute to the advancement of understanding, prevention, diagnosis, and treatment of cancer.
The scope of topics covered in Molecular Cancer is diverse and inclusive. These include, but are not limited to, cell and tumor biology, angiogenesis, utilizing animal models, understanding metastasis, exploring cancer antigens and the immune response, investigating cellular signaling and molecular biology, examining epidemiology, genetic and molecular profiling of cancer, identifying molecular targets, studying cancer stem cells, exploring DNA damage and repair mechanisms, analyzing cell cycle regulation, investigating apoptosis, exploring molecular virology, and evaluating vaccine and antibody-based cancer therapies.
Molecular Cancer serves as an important platform for sharing exciting discoveries in cancer-related research. It offers an unparalleled opportunity to communicate information to both specialists and the general public. The online presence of Molecular Cancer enables immediate publication of accepted articles and facilitates the presentation of large datasets and supplementary information. This ensures that new research is efficiently and rapidly disseminated to the scientific community.