Bridging Outer- and Inner-Sphere Electrosynthesis from Biomass-Derived Furfural Using Single Atom Catalysts

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL
Sihang Liu, Zamaan Mukadam, Angus Pedersen, Jesús Barrio, Joseph Parker, Helen Tyrrell, Sarah J. Haigh, Maria Magdalena Titirici, Ifan E. L. Stephens, Georg Kastlunger
{"title":"Bridging Outer- and Inner-Sphere Electrosynthesis from Biomass-Derived Furfural Using Single Atom Catalysts","authors":"Sihang Liu, Zamaan Mukadam, Angus Pedersen, Jesús Barrio, Joseph Parker, Helen Tyrrell, Sarah J. Haigh, Maria Magdalena Titirici, Ifan E. L. Stephens, Georg Kastlunger","doi":"10.1021/acs.jpcc.5c00468","DOIUrl":null,"url":null,"abstract":"Nitrogen-doped carbon-based single-atom catalysts offer unique and tunable active sites to catalyze a wide spectrum of electrochemical processes. Despite recent progress on single-atom electrocatalysis, their potential application to upgrade biomass-derived chemicals has rarely been investigated. Herein, we carried out density-functional-theory-based screening of metal–nitrogen–carbon (MNC) single-atom catalysts for electrocatalytic furfural reduction. Using furfural’s adsorption strength as a descriptor, we identified CrNC to promote furfuryl alcohol production in contrast to other single atom motifs which are only selective to hydrofuroin. Its higher selectivity toward furfuryl alcohol can be attributed to the enhanced adsorption strength of furfural via chemisorption of the carbonyl group and its overall enhanced oxygen binding strength. We then synthesized the single-atom motifs via their incorporation in a highly porous nitrogen-doped carbon synthesized through an ionothermal templating process. In agreement with our predictions, CrNC was able to produce furfuryl alcohol with Faradaic efficiency of ca. 18%, while Co, Fe, and NiNC motifs selectively produce hydrofuroin, with limited Faradaic efficiencies to furfuryl alcohol <3%. Our work showcases a proof-of-concept for the design and optimization of single-atom catalysts to bridge the selectivity toward outer- and inner-sphere electron-transfer-based products from biomass-derived chemicals.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"29 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.5c00468","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nitrogen-doped carbon-based single-atom catalysts offer unique and tunable active sites to catalyze a wide spectrum of electrochemical processes. Despite recent progress on single-atom electrocatalysis, their potential application to upgrade biomass-derived chemicals has rarely been investigated. Herein, we carried out density-functional-theory-based screening of metal–nitrogen–carbon (MNC) single-atom catalysts for electrocatalytic furfural reduction. Using furfural’s adsorption strength as a descriptor, we identified CrNC to promote furfuryl alcohol production in contrast to other single atom motifs which are only selective to hydrofuroin. Its higher selectivity toward furfuryl alcohol can be attributed to the enhanced adsorption strength of furfural via chemisorption of the carbonyl group and its overall enhanced oxygen binding strength. We then synthesized the single-atom motifs via their incorporation in a highly porous nitrogen-doped carbon synthesized through an ionothermal templating process. In agreement with our predictions, CrNC was able to produce furfuryl alcohol with Faradaic efficiency of ca. 18%, while Co, Fe, and NiNC motifs selectively produce hydrofuroin, with limited Faradaic efficiencies to furfuryl alcohol <3%. Our work showcases a proof-of-concept for the design and optimization of single-atom catalysts to bridge the selectivity toward outer- and inner-sphere electron-transfer-based products from biomass-derived chemicals.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信