Drive to Asymmetric Lamellar Order by Polymerization-Induced Microphase Separation from the Janus Bottlebrush Architecture

IF 5.1 1区 化学 Q1 POLYMER SCIENCE
Changsu Yoo, Myungeun Seo
{"title":"Drive to Asymmetric Lamellar Order by Polymerization-Induced Microphase Separation from the Janus Bottlebrush Architecture","authors":"Changsu Yoo, Myungeun Seo","doi":"10.1021/acs.macromol.4c02426","DOIUrl":null,"url":null,"abstract":"We report growing a polymer chain from the backbone of a bottlebrush polymer in the neat polymerization condition produces nanostructured polymer monoliths with ordered morphologies based on the Janus bottlebrush architecture. We installed a norbornene unit at the end of the polylactide macro-chain transfer agent (PLA-CTA) by single unit monomer insertion. We polymerized the resulting macromonomer via ring-opening metathesis polymerization to produce the PLA bottlebrush polymer, where a trithiocarbonate moiety remains on the backbone per every repeating unit. Neat polymerization of styrene in the presence of the PLA bottlebrush polymer proceeded in a grafting-from manner following the reversible addition–fragmentation chain transfer mechanism, resulting in a monolithic solid containing the doubly grafted PLA and polystyrene (PS) side chains. Polymerization-induced microphase separation (PIMS) spontaneously occurred, driven by the incompatibility between PLA and the growing PS segment. In contrast to the significant disordered fraction in PLA-<i>b</i>-PS produced with the linear PLA-CTA, the PLA/PS Janus bottlebrush polymer showed improved order across the investigated composition range. Formation of the asymmetric lamellae up to &gt;80 vol % of PS indicated a strong preference for the lamellar symmetry of the Janus architecture. The in situ structured monoliths even exhibited narrower scattering peak widths compared to the solution-cast and annealed sample, suggesting the utility of the Janus PIMS process for facile preparation of ordered nanostructured materials with uniform domain size.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"39 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.4c02426","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We report growing a polymer chain from the backbone of a bottlebrush polymer in the neat polymerization condition produces nanostructured polymer monoliths with ordered morphologies based on the Janus bottlebrush architecture. We installed a norbornene unit at the end of the polylactide macro-chain transfer agent (PLA-CTA) by single unit monomer insertion. We polymerized the resulting macromonomer via ring-opening metathesis polymerization to produce the PLA bottlebrush polymer, where a trithiocarbonate moiety remains on the backbone per every repeating unit. Neat polymerization of styrene in the presence of the PLA bottlebrush polymer proceeded in a grafting-from manner following the reversible addition–fragmentation chain transfer mechanism, resulting in a monolithic solid containing the doubly grafted PLA and polystyrene (PS) side chains. Polymerization-induced microphase separation (PIMS) spontaneously occurred, driven by the incompatibility between PLA and the growing PS segment. In contrast to the significant disordered fraction in PLA-b-PS produced with the linear PLA-CTA, the PLA/PS Janus bottlebrush polymer showed improved order across the investigated composition range. Formation of the asymmetric lamellae up to >80 vol % of PS indicated a strong preference for the lamellar symmetry of the Janus architecture. The in situ structured monoliths even exhibited narrower scattering peak widths compared to the solution-cast and annealed sample, suggesting the utility of the Janus PIMS process for facile preparation of ordered nanostructured materials with uniform domain size.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信