Hamza Sayadi, Yeleen Fromage, Marc Labriffe, Pierre-André Billat, Cyrielle Codde, Selim Arraki Zava, Pierre Marquet, Jean-Baptiste Woillard
{"title":"Estimation of Ganciclovir Exposure in Adults Transplant Patients by Machine Learning.","authors":"Hamza Sayadi, Yeleen Fromage, Marc Labriffe, Pierre-André Billat, Cyrielle Codde, Selim Arraki Zava, Pierre Marquet, Jean-Baptiste Woillard","doi":"10.1208/s12248-025-01034-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Valganciclovir, a prodrug of ganciclovir (GCV), is used to prevent cytomegalovirus infection after transplantation, with doses adjusted based on creatinine clearance (CrCL) to target GCV AUC0-24 h of 40-60 mg*h/L. This sometimes leads to overexposure or underexposure. This study aimed to train, test and validate machine learning (ML) algorithms for accurate GCV AUC0-24 h estimation in solid organ transplantation.</p><p><strong>Methods: </strong>We simulated patients for different dosing regimen (900 mg/24 h, 450 mg/24 h, 450 mg/48 h, 450 mg/72 h) using two literature population pharmacokinetic models, allocating 75% for training and 25% for testing. Simulations from two other literature models and real patients provided validation datasets. Three independent sets of ML algorithms were created for each regimen, incorporating CrCL and 2 or 3 concentrations. We evaluated their performance on testing and validation datasets and compared them with MAP-BE.</p><p><strong>Results: </strong>XGBoost using 3 concentrations generated the most accurate predictions. In testing dataset, they exhibited a relative bias of -0.02 to 1.5% and a relative RMSE of 2.6 to 8.5%. In the validation dataset, a relative bias of 1.5 to 5.8% and 8.9 to 16.5%, and a relative RMSE of 8.5 to 9.6% and 10.7% to 19.7% were observed depending on the model used. XGBoost algorithms outperformed or matched MAP-BE, showing enhanced generalization and robustness in their estimates. When applied to real patients' data, algorithms using 2 concentrations showed relative bias of 1.26% and relative RMSE of 12.68%.</p><p><strong>Conclusions: </strong>XGBoost ML models accurately estimated GCV AUC0-24 h from limited samples and CrCL, providing a strategy for optimized therapeutic drug monitoring.</p>","PeriodicalId":50934,"journal":{"name":"AAPS Journal","volume":"27 2","pages":"53"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1208/s12248-025-01034-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Valganciclovir, a prodrug of ganciclovir (GCV), is used to prevent cytomegalovirus infection after transplantation, with doses adjusted based on creatinine clearance (CrCL) to target GCV AUC0-24 h of 40-60 mg*h/L. This sometimes leads to overexposure or underexposure. This study aimed to train, test and validate machine learning (ML) algorithms for accurate GCV AUC0-24 h estimation in solid organ transplantation.
Methods: We simulated patients for different dosing regimen (900 mg/24 h, 450 mg/24 h, 450 mg/48 h, 450 mg/72 h) using two literature population pharmacokinetic models, allocating 75% for training and 25% for testing. Simulations from two other literature models and real patients provided validation datasets. Three independent sets of ML algorithms were created for each regimen, incorporating CrCL and 2 or 3 concentrations. We evaluated their performance on testing and validation datasets and compared them with MAP-BE.
Results: XGBoost using 3 concentrations generated the most accurate predictions. In testing dataset, they exhibited a relative bias of -0.02 to 1.5% and a relative RMSE of 2.6 to 8.5%. In the validation dataset, a relative bias of 1.5 to 5.8% and 8.9 to 16.5%, and a relative RMSE of 8.5 to 9.6% and 10.7% to 19.7% were observed depending on the model used. XGBoost algorithms outperformed or matched MAP-BE, showing enhanced generalization and robustness in their estimates. When applied to real patients' data, algorithms using 2 concentrations showed relative bias of 1.26% and relative RMSE of 12.68%.
Conclusions: XGBoost ML models accurately estimated GCV AUC0-24 h from limited samples and CrCL, providing a strategy for optimized therapeutic drug monitoring.
期刊介绍:
The AAPS Journal, an official journal of the American Association of Pharmaceutical Scientists (AAPS), publishes novel and significant findings in the various areas of pharmaceutical sciences impacting human and veterinary therapeutics, including:
· Drug Design and Discovery
· Pharmaceutical Biotechnology
· Biopharmaceutics, Formulation, and Drug Delivery
· Metabolism and Transport
· Pharmacokinetics, Pharmacodynamics, and Pharmacometrics
· Translational Research
· Clinical Evaluations and Therapeutic Outcomes
· Regulatory Science
We invite submissions under the following article types:
· Original Research Articles
· Reviews and Mini-reviews
· White Papers, Commentaries, and Editorials
· Meeting Reports
· Brief/Technical Reports and Rapid Communications
· Regulatory Notes
· Tutorials
· Protocols in the Pharmaceutical Sciences
In addition, The AAPS Journal publishes themes, organized by guest editors, which are focused on particular areas of current interest to our field.