Finding high posterior density phylogenies by systematically extending a directed acyclic graph.

IF 1.5 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS
Chris Jennings-Shaffer, David H Rich, Matthew Macaulay, Michael D Karcher, Tanvi Ganapathy, Shosuke Kiami, Anna Kooperberg, Cheng Zhang, Marc A Suchard, Frederick A Matsen
{"title":"Finding high posterior density phylogenies by systematically extending a directed acyclic graph.","authors":"Chris Jennings-Shaffer, David H Rich, Matthew Macaulay, Michael D Karcher, Tanvi Ganapathy, Shosuke Kiami, Anna Kooperberg, Cheng Zhang, Marc A Suchard, Frederick A Matsen","doi":"10.1186/s13015-025-00273-x","DOIUrl":null,"url":null,"abstract":"<p><p>Bayesian phylogenetics typically estimates a posterior distribution, or aspects thereof, using Markov chain Monte Carlo methods. These methods integrate over tree space by applying local rearrangements to move a tree through its space as a random walk. Previous work explored the possibility of replacing this random walk with a systematic search, but was quickly overwhelmed by the large number of probable trees in the posterior distribution. In this paper we develop methods to sidestep this problem using a recently introduced structure called the subsplit directed acyclic graph (sDAG). This structure can represent many trees at once, and local rearrangements of trees translate to methods of enlarging the sDAG. Here we propose two methods of introducing, ranking, and selecting local rearrangements on sDAGs to produce a collection of trees with high posterior density. One of these methods successfully recovers the set of high posterior density trees across a range of data sets. However, we find that a simpler strategy of aggregating trees into an sDAG in fact is computationally faster and returns a higher fraction of probable trees.</p>","PeriodicalId":50823,"journal":{"name":"Algorithms for Molecular Biology","volume":"20 1","pages":"2"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11869616/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms for Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13015-025-00273-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Bayesian phylogenetics typically estimates a posterior distribution, or aspects thereof, using Markov chain Monte Carlo methods. These methods integrate over tree space by applying local rearrangements to move a tree through its space as a random walk. Previous work explored the possibility of replacing this random walk with a systematic search, but was quickly overwhelmed by the large number of probable trees in the posterior distribution. In this paper we develop methods to sidestep this problem using a recently introduced structure called the subsplit directed acyclic graph (sDAG). This structure can represent many trees at once, and local rearrangements of trees translate to methods of enlarging the sDAG. Here we propose two methods of introducing, ranking, and selecting local rearrangements on sDAGs to produce a collection of trees with high posterior density. One of these methods successfully recovers the set of high posterior density trees across a range of data sets. However, we find that a simpler strategy of aggregating trees into an sDAG in fact is computationally faster and returns a higher fraction of probable trees.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Algorithms for Molecular Biology
Algorithms for Molecular Biology 生物-生化研究方法
CiteScore
2.40
自引率
10.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Algorithms for Molecular Biology publishes articles on novel algorithms for biological sequence and structure analysis, phylogeny reconstruction, and combinatorial algorithms and machine learning. Areas of interest include but are not limited to: algorithms for RNA and protein structure analysis, gene prediction and genome analysis, comparative sequence analysis and alignment, phylogeny, gene expression, machine learning, and combinatorial algorithms. Where appropriate, manuscripts should describe applications to real-world data. However, pure algorithm papers are also welcome if future applications to biological data are to be expected, or if they address complexity or approximation issues of novel computational problems in molecular biology. Articles about novel software tools will be considered for publication if they contain some algorithmically interesting aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信