{"title":"Viral and Cellular Insulators Promote Sustained HSV Vector Mediated Transgene Expression in Brain.","authors":"Selene Ingusci, Justus B Cohen, Joseph C Glorioso","doi":"10.1016/j.ymthe.2025.02.039","DOIUrl":null,"url":null,"abstract":"<p><p>We have developed a gene therapy platform based on non-toxic, high-capacity replication defective (rd) herpes simplex virus type 1 (HSV-1) vectors. We previously determined that transgene expression from rdHSV-1 vectors requires strategic placement of insulators-small DNA elements that overcome the host's epigenetic silencing of foreign DNA-to maintain transgenes in euchromatin regions. Transgene expression was rescued by replacing either the latency associated transcript (LAT) or the the infected cell protein 4 (ICP4) gene with the transgene cassette close to naturally occurring viral insulators. The ICP4 locus was more permissive for transgene expression than the LAT locus in neurons in vitro. Following in vivo brain delivery, transgene expression from both loci lasted for at least 4 months. However, the level of expression tended to decline over time. To enhance transgene expression, we designed a novel insulator environment by combining cellular insulators with the resident viral insulators. In combination, these elements provided significantly higher levels of transgene expression in the brain than the viral insulators alone, lasting for at least 11.7 months. This new cassette design extends transgene activity in neurons compared to previous designs and holds promise for gene therapy applications in treating brain disorders.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2025.02.039","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We have developed a gene therapy platform based on non-toxic, high-capacity replication defective (rd) herpes simplex virus type 1 (HSV-1) vectors. We previously determined that transgene expression from rdHSV-1 vectors requires strategic placement of insulators-small DNA elements that overcome the host's epigenetic silencing of foreign DNA-to maintain transgenes in euchromatin regions. Transgene expression was rescued by replacing either the latency associated transcript (LAT) or the the infected cell protein 4 (ICP4) gene with the transgene cassette close to naturally occurring viral insulators. The ICP4 locus was more permissive for transgene expression than the LAT locus in neurons in vitro. Following in vivo brain delivery, transgene expression from both loci lasted for at least 4 months. However, the level of expression tended to decline over time. To enhance transgene expression, we designed a novel insulator environment by combining cellular insulators with the resident viral insulators. In combination, these elements provided significantly higher levels of transgene expression in the brain than the viral insulators alone, lasting for at least 11.7 months. This new cassette design extends transgene activity in neurons compared to previous designs and holds promise for gene therapy applications in treating brain disorders.
期刊介绍:
Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.