A VSV-based oral rabies vaccine was sentineled by Peyer's patches and induced a timely and durable immune response.

IF 12.1 1区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Shen Wang, Zhenshan Wang, Weiqi Wang, Hongyu Sun, Na Feng, Yongkun Zhao, Jianzhong Wang, Tiecheng Wang, Xianzhu Xia, Feihu Yan
{"title":"A VSV-based oral rabies vaccine was sentineled by Peyer's patches and induced a timely and durable immune response.","authors":"Shen Wang, Zhenshan Wang, Weiqi Wang, Hongyu Sun, Na Feng, Yongkun Zhao, Jianzhong Wang, Tiecheng Wang, Xianzhu Xia, Feihu Yan","doi":"10.1016/j.ymthe.2025.02.038","DOIUrl":null,"url":null,"abstract":"<p><p>The global eradication of canine-mediated human rabies remains an ongoing public health priority. While conventional oral rabies vaccines (ORVs) have demonstrated partial success in interrupting zoonotic transmission, current formulations necessitate improvement in both immunogenic profiles and mechanistic clarity. Herein, we present a recombinant vesicular stomatitis virus (VSV)-vectored vaccine candidate (rVSVΔG-ERA-G) engineered to express the glycoprotein of the rabies virus (RABV) ERA strain, substituting the native VSV glycoprotein. Preclinical evaluation across multiple mammalian species (Mus musculus, Canis lupus familiaris, Felis catus, Arctic fox, and Nyctereutes procyonoides) revealed rapid seroconversion and sustained neutralizing antibody responses. Challenge experiments demonstrated 100% survival efficacy in pre-exposure prophylaxis models, with partial protection observed in post-exposure scenarios. Safety assessments confirmed significant attenuation of neurotropism and absence of horizontal transmission or environmental shedding. Furthermore, evidence shown that rVSVΔG-ERA-G is recognized by Peyer's patches (PPs), where a cascade activation of immune cells occurred. From another perspective, the absence of functional microfold cells in PPs hampered the initiation and progression of immune responses. This proof-of-concept study establishes rVSVΔG-ERA-G as an ORV candidate with enhanced biosafety and cross-species immunogenicity. The elucidation of M cell-dependent mucosal priming mechanisms provides a rational framework for optimizing the targeted delivery of ORVs.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2025.02.038","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The global eradication of canine-mediated human rabies remains an ongoing public health priority. While conventional oral rabies vaccines (ORVs) have demonstrated partial success in interrupting zoonotic transmission, current formulations necessitate improvement in both immunogenic profiles and mechanistic clarity. Herein, we present a recombinant vesicular stomatitis virus (VSV)-vectored vaccine candidate (rVSVΔG-ERA-G) engineered to express the glycoprotein of the rabies virus (RABV) ERA strain, substituting the native VSV glycoprotein. Preclinical evaluation across multiple mammalian species (Mus musculus, Canis lupus familiaris, Felis catus, Arctic fox, and Nyctereutes procyonoides) revealed rapid seroconversion and sustained neutralizing antibody responses. Challenge experiments demonstrated 100% survival efficacy in pre-exposure prophylaxis models, with partial protection observed in post-exposure scenarios. Safety assessments confirmed significant attenuation of neurotropism and absence of horizontal transmission or environmental shedding. Furthermore, evidence shown that rVSVΔG-ERA-G is recognized by Peyer's patches (PPs), where a cascade activation of immune cells occurred. From another perspective, the absence of functional microfold cells in PPs hampered the initiation and progression of immune responses. This proof-of-concept study establishes rVSVΔG-ERA-G as an ORV candidate with enhanced biosafety and cross-species immunogenicity. The elucidation of M cell-dependent mucosal priming mechanisms provides a rational framework for optimizing the targeted delivery of ORVs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Therapy
Molecular Therapy 医学-生物工程与应用微生物
CiteScore
19.20
自引率
3.20%
发文量
357
审稿时长
3 months
期刊介绍: Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信