Inhibition of Cullin3 Neddylation Alleviates Diabetic Retinopathy by Activating Nrf2 Signaling to Combat ROS-Induced Oxidative Stress and Inflammation.
{"title":"Inhibition of Cullin3 Neddylation Alleviates Diabetic Retinopathy by Activating Nrf2 Signaling to Combat ROS-Induced Oxidative Stress and Inflammation.","authors":"Yueqin Chen, Cong Liu, Jun Tong, Chang He, Xinru Ling, Jinjin Xiang, Chunyan Xue, Genhong Yao, Lingyun Sun, Zhenggao Xie","doi":"10.1007/s10753-025-02259-8","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidative stress and inflammation induced by reactive oxygen species (ROS) play important roles in the development of diabetic retinopathy (DR). Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling, which is negatively controlled by Cullin3-RING E3 ligase (CRL3) and controls ROS levels, is compromised in DR. CRL3 activity is regulated by Cullin3 neddylation. Nonetheless, the relationship between Cullin3 neddylation and DR remains uncertain. The goal of this study was to evaluate the effect of Cullin3 neddylation on DR and its underlying mechanisms by utilizing MLN4924, a neddylation inhibitor. Cullin3 neddylation was elevated in diabetic rats' retinas as well as in advanced glycation end products (AGEs)-induced endothelial cells. Inhibiting neddylation of Cullin3 with MLN4924 downregulated Nrf2 ubiquitination, promoted Nrf2 accumulation, suppressed ROS-induced oxidative stress and inflammation, and attenuated blood-retinal barrier (BRB) breakdown in both diabetic vivo and vitro models. However, the beneficial impact of MLN4924 was compromised when Nrf2 was suppressed with siRNA in vitro. This study showed that inhibition of Cullin3 neddylation with MLN4924 exerted protective effect on DR by activating Nrf2 signaling to inhibit ROS-induced retinal injury, which indicated that targeting Cullin3 neddylation could be a promising treatment option for DR.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10753-025-02259-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Oxidative stress and inflammation induced by reactive oxygen species (ROS) play important roles in the development of diabetic retinopathy (DR). Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling, which is negatively controlled by Cullin3-RING E3 ligase (CRL3) and controls ROS levels, is compromised in DR. CRL3 activity is regulated by Cullin3 neddylation. Nonetheless, the relationship between Cullin3 neddylation and DR remains uncertain. The goal of this study was to evaluate the effect of Cullin3 neddylation on DR and its underlying mechanisms by utilizing MLN4924, a neddylation inhibitor. Cullin3 neddylation was elevated in diabetic rats' retinas as well as in advanced glycation end products (AGEs)-induced endothelial cells. Inhibiting neddylation of Cullin3 with MLN4924 downregulated Nrf2 ubiquitination, promoted Nrf2 accumulation, suppressed ROS-induced oxidative stress and inflammation, and attenuated blood-retinal barrier (BRB) breakdown in both diabetic vivo and vitro models. However, the beneficial impact of MLN4924 was compromised when Nrf2 was suppressed with siRNA in vitro. This study showed that inhibition of Cullin3 neddylation with MLN4924 exerted protective effect on DR by activating Nrf2 signaling to inhibit ROS-induced retinal injury, which indicated that targeting Cullin3 neddylation could be a promising treatment option for DR.
氧化应激和活性氧(ROS)诱导的炎症反应在糖尿病视网膜病变(DR)的发生发展中起着重要作用。核因子红细胞2相关因子2 (Nrf2)信号被Cullin3- ring E3连接酶(CRL3)负调控并控制ROS水平,在dr中受损,CRL3活性受Cullin3类化修饰调节。尽管如此,Cullin3类泛素化与DR之间的关系仍不确定。本研究的目的是利用类化修饰抑制剂MLN4924来评估Cullin3类化修饰对DR的影响及其潜在机制。在糖尿病大鼠视网膜以及晚期糖基化终产物(AGEs)诱导的内皮细胞中Cullin3类化修饰升高。在糖尿病体内和体外模型中,MLN4924抑制Cullin3类泛素化可下调Nrf2泛素化,促进Nrf2积累,抑制ros诱导的氧化应激和炎症,减轻血视网膜屏障(BRB)的破坏。然而,在体外实验中,当用siRNA抑制Nrf2时,MLN4924的有益作用受到损害。本研究表明,MLN4924通过激活Nrf2信号,抑制ros诱导的视网膜损伤,从而抑制Cullin3类化修饰,对DR具有保护作用,这表明靶向Cullin3类化修饰可能是治疗DR的一种有希望的选择。
期刊介绍:
Inflammation publishes the latest international advances in experimental and clinical research on the physiology, biochemistry, cell biology, and pharmacology of inflammation. Contributions include full-length scientific reports, short definitive articles, and papers from meetings and symposia proceedings. The journal''s coverage includes acute and chronic inflammation; mediators of inflammation; mechanisms of tissue injury and cytotoxicity; pharmacology of inflammation; and clinical studies of inflammation and its modification.