LETSmix: a spatially informed and learning-based domain adaptation method for cell-type deconvolution in spatial transcriptomics.

IF 10.4 1区 生物学 Q1 GENETICS & HEREDITY
Yangen Zhan, Yongbing Zhang, Zheqi Hu, Yifeng Wang, Zirui Zhu, Sijing Du, Xiangming Yan, Xiu Li
{"title":"LETSmix: a spatially informed and learning-based domain adaptation method for cell-type deconvolution in spatial transcriptomics.","authors":"Yangen Zhan, Yongbing Zhang, Zheqi Hu, Yifeng Wang, Zirui Zhu, Sijing Du, Xiangming Yan, Xiu Li","doi":"10.1186/s13073-025-01442-8","DOIUrl":null,"url":null,"abstract":"<p><p>Spatial transcriptomics (ST) enables the study of gene expression in spatial context, but many ST technologies face challenges due to limited resolution, leading to cell mixtures at each spot. We present LETSmix to deconvolve cell types by integrating spatial correlations through a tailored LETS filter, which leverages layer annotations, expression similarities, image texture features, and spatial coordinates to refine ST data. Additionally, LETSmix employs a mixup-augmented domain adaptation strategy to address discrepancies between ST and reference single-cell RNA sequencing data. Comprehensive evaluations across diverse ST platforms and tissue types demonstrate its high accuracy in estimating cell-type proportions and spatial patterns, surpassing existing methods (URL: https://github.com/ZhanYangen/LETSmix ).</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"17 1","pages":"16"},"PeriodicalIF":10.4000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11869467/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13073-025-01442-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Spatial transcriptomics (ST) enables the study of gene expression in spatial context, but many ST technologies face challenges due to limited resolution, leading to cell mixtures at each spot. We present LETSmix to deconvolve cell types by integrating spatial correlations through a tailored LETS filter, which leverages layer annotations, expression similarities, image texture features, and spatial coordinates to refine ST data. Additionally, LETSmix employs a mixup-augmented domain adaptation strategy to address discrepancies between ST and reference single-cell RNA sequencing data. Comprehensive evaluations across diverse ST platforms and tissue types demonstrate its high accuracy in estimating cell-type proportions and spatial patterns, surpassing existing methods (URL: https://github.com/ZhanYangen/LETSmix ).

求助全文
约1分钟内获得全文 求助全文
来源期刊
Genome Medicine
Genome Medicine GENETICS & HEREDITY-
CiteScore
20.80
自引率
0.80%
发文量
128
审稿时长
6-12 weeks
期刊介绍: Genome Medicine is an open access journal that publishes outstanding research applying genetics, genomics, and multi-omics to understand, diagnose, and treat disease. Bridging basic science and clinical research, it covers areas such as cancer genomics, immuno-oncology, immunogenomics, infectious disease, microbiome, neurogenomics, systems medicine, clinical genomics, gene therapies, precision medicine, and clinical trials. The journal publishes original research, methods, software, and reviews to serve authors and promote broad interest and importance in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信