Fuqi Mei, Deyu Deng, Zijun Cao, Liyan Lou, Kangmin Chen, Minjie Hu, Zhenhu Zhu, Jiangyun Shen, Jianzhao Zhang, Jie Liang, Jingyong Huang, Min Bao, Ari Waisman, Xu Wang
{"title":"Deubiquitination of RIPK3 by OTUB2 potentiates neuronal necroptosis after ischemic stroke.","authors":"Fuqi Mei, Deyu Deng, Zijun Cao, Liyan Lou, Kangmin Chen, Minjie Hu, Zhenhu Zhu, Jiangyun Shen, Jianzhao Zhang, Jie Liang, Jingyong Huang, Min Bao, Ari Waisman, Xu Wang","doi":"10.1038/s44321-025-00206-6","DOIUrl":null,"url":null,"abstract":"<p><p>As a common and severe cerebrovascular disease, ischemic stroke casts a significant shadow over global health. Unfortunately, the mechanisms regulating neuronal death in the affected areas remain largely unclear. Here, we found that deletion of the deubiquitinating enzyme Otubain-2 (OTUB2) significantly alleviated ischemia-induced cerebral infarction and neurological deficits, accompanied by a reduction in neuronal loss, glial activation, and neuroinflammation. OTUB2 was predominantly expressed in neurons and its deletion decreased receptor-interacting protein kinase 3 (RIPK3)-mediated neuronal necroptosis. Moreover, OTUB2 increased RIPK3 protein abundance by inhibiting the proteasomal degradation of RIPK3. Mechanistically, OTUB2 removed K48-linked polyubiquitin chains from RIPK3 through its active site C51. Importantly, pharmacological inhibition of OTUB2 alleviated ischemic brain injury in mice and reduced oxygen-glucose deprivation-induced neuronal death in human brain organoids. These results demonstrate that OTUB2 critically regulates ischemic stroke injury by potentiating neuronal necroptosis, suggesting that OTUB2 inhibition may become a potential therapeutic approach for treating ischemic stroke.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s44321-025-00206-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
As a common and severe cerebrovascular disease, ischemic stroke casts a significant shadow over global health. Unfortunately, the mechanisms regulating neuronal death in the affected areas remain largely unclear. Here, we found that deletion of the deubiquitinating enzyme Otubain-2 (OTUB2) significantly alleviated ischemia-induced cerebral infarction and neurological deficits, accompanied by a reduction in neuronal loss, glial activation, and neuroinflammation. OTUB2 was predominantly expressed in neurons and its deletion decreased receptor-interacting protein kinase 3 (RIPK3)-mediated neuronal necroptosis. Moreover, OTUB2 increased RIPK3 protein abundance by inhibiting the proteasomal degradation of RIPK3. Mechanistically, OTUB2 removed K48-linked polyubiquitin chains from RIPK3 through its active site C51. Importantly, pharmacological inhibition of OTUB2 alleviated ischemic brain injury in mice and reduced oxygen-glucose deprivation-induced neuronal death in human brain organoids. These results demonstrate that OTUB2 critically regulates ischemic stroke injury by potentiating neuronal necroptosis, suggesting that OTUB2 inhibition may become a potential therapeutic approach for treating ischemic stroke.
期刊介绍:
EMBO Molecular Medicine is an open access journal in the field of experimental medicine, dedicated to science at the interface between clinical research and basic life sciences. In addition to human data, we welcome original studies performed in cells and/or animals provided they demonstrate human disease relevance.
To enhance and better specify our commitment to precision medicine, we have expanded the scope of EMM and call for contributions in the following fields:
Environmental health and medicine, in particular studies in the field of environmental medicine in its functional and mechanistic aspects (exposome studies, toxicology, biomarkers, modeling, and intervention).
Clinical studies and case reports - Human clinical studies providing decisive clues how to control a given disease (epidemiological, pathophysiological, therapeutic, and vaccine studies). Case reports supporting hypothesis-driven research on the disease.
Biomedical technologies - Studies that present innovative materials, tools, devices, and technologies with direct translational potential and applicability (imaging technologies, drug delivery systems, tissue engineering, and AI)