{"title":"Do physiological changes in fatty acid composition alter cellular ferroptosis susceptibility and influence cell function?","authors":"Graeme I Lancaster, Andrew J Murphy","doi":"10.1016/j.jlr.2025.100765","DOIUrl":null,"url":null,"abstract":"<p><p>Ferroptosis is an iron-dependent form of cell death driven by the excessive peroxidation of poly-unsaturated fatty acids (PUFAs) within membrane phospholipids. Ferroptosis is a hallmark of many diseases and preventing or inducing ferroptosis has considerable therapeutic potential. Like other forms of cell death, the pathological importance and therapeutic potential of ferroptosis is well appreciated. However, while cell death modalities such as apoptosis and necroptosis have critical physiological roles, such as in development and tissue homeostasis, whether ferroptosis has important physiological roles is largely unknown. In this regard, key questions for field are as follows: Is ferroptosis used for physiological processes? Are certain cell-types purposely adapted to be either resistant or sensitive to ferroptosis to be able to function optimally? Do physiological perturbations such as aging and diet impact ferroptosis susceptibility? Herein, we have reviewed emerging evidence that supports the idea that being able to selectively and controllably induce or resist ferroptosis is essential for development and cell function. While several factors regulate ferroptosis, it appears that the ability of cells and tissues to control their lipid composition, specifically the abundance of phospholipids containing PUFAs, is crucial for cells to be able to either resist or be sensitized to ferroptosis. Finally, aging and diets enriched in specific PUFAs lead to an increase in cellular PUFA levels which may sensitize cells to ferroptosis. Therefore, changes in dietary PUFAs or againg may impact the pathogenesis of diseases where ferroptosis is involved.</p>","PeriodicalId":16209,"journal":{"name":"Journal of Lipid Research","volume":" ","pages":"100765"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lipid Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jlr.2025.100765","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ferroptosis is an iron-dependent form of cell death driven by the excessive peroxidation of poly-unsaturated fatty acids (PUFAs) within membrane phospholipids. Ferroptosis is a hallmark of many diseases and preventing or inducing ferroptosis has considerable therapeutic potential. Like other forms of cell death, the pathological importance and therapeutic potential of ferroptosis is well appreciated. However, while cell death modalities such as apoptosis and necroptosis have critical physiological roles, such as in development and tissue homeostasis, whether ferroptosis has important physiological roles is largely unknown. In this regard, key questions for field are as follows: Is ferroptosis used for physiological processes? Are certain cell-types purposely adapted to be either resistant or sensitive to ferroptosis to be able to function optimally? Do physiological perturbations such as aging and diet impact ferroptosis susceptibility? Herein, we have reviewed emerging evidence that supports the idea that being able to selectively and controllably induce or resist ferroptosis is essential for development and cell function. While several factors regulate ferroptosis, it appears that the ability of cells and tissues to control their lipid composition, specifically the abundance of phospholipids containing PUFAs, is crucial for cells to be able to either resist or be sensitized to ferroptosis. Finally, aging and diets enriched in specific PUFAs lead to an increase in cellular PUFA levels which may sensitize cells to ferroptosis. Therefore, changes in dietary PUFAs or againg may impact the pathogenesis of diseases where ferroptosis is involved.
期刊介绍:
The Journal of Lipid Research (JLR) publishes original articles and reviews in the broadly defined area of biological lipids. We encourage the submission of manuscripts relating to lipids, including those addressing problems in biochemistry, molecular biology, structural biology, cell biology, genetics, molecular medicine, clinical medicine and metabolism. Major criteria for acceptance of articles are new insights into mechanisms of lipid function and metabolism and/or genes regulating lipid metabolism along with sound primary experimental data. Interpretation of the data is the authors’ responsibility, and speculation should be labeled as such. Manuscripts that provide new ways of purifying, identifying and quantifying lipids are invited for the Methods section of the Journal. JLR encourages contributions from investigators in all countries, but articles must be submitted in clear and concise English.