Linear Antimicrobial Peptide, Containing a Diindolyl Methane Unnatural Amino Acid, Potentiates Gentamicin Against Methicillin-Resistant Staphylococcus aureus

IF 3.5 4区 医学 Q2 CHEMISTRY, MEDICINAL
Shalini Singh, Grace Kaul, Manjulika Shukla, Abdul Akhir, Shubhandra Tripathi, Abhinav Gupta, Rakhi Bormon, Nisanth N. Nair, Sidharth Chopra, Sandeep Verma
{"title":"Linear Antimicrobial Peptide, Containing a Diindolyl Methane Unnatural Amino Acid, Potentiates Gentamicin Against Methicillin-Resistant Staphylococcus aureus","authors":"Shalini Singh,&nbsp;Grace Kaul,&nbsp;Manjulika Shukla,&nbsp;Abdul Akhir,&nbsp;Shubhandra Tripathi,&nbsp;Abhinav Gupta,&nbsp;Rakhi Bormon,&nbsp;Nisanth N. Nair,&nbsp;Sidharth Chopra,&nbsp;Sandeep Verma","doi":"10.1002/ddr.70070","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The headway for the management of emerging resistant microbial strains has become a demanding task. Over the years, antimicrobial peptides (AMP), have been recognized and explored for their highly systematized SAR and antibacterial properties. With this background, we have reported a new class of AMPs. These peptides incorporate an unnatural amino acid, with a motivation from cruciferous bioactive phytochemical bisindoles methane derivatives with highly selective antimicrobial action. These peptides may also be considered as linear derivatives of hirsutide isolated from entomopathogenic fungus. The synthesized peptides were tested for their antimicrobial activity against an ESKAPE pathogen panel, where peptide <b>3</b> exhibited equipotent MIC and potent synergistic action along with gentamicin against <i>Staphylococcus aureus</i> and <i>Enterococcus</i> clinical isolates. This combination was also able to repotentiate gentamicin against NRS119, a gentamicin-resistant MRSA. Molecular dynamics study and free energy calculations provided insights to membrane disruptive properties of AMP action, which assisted gentamicin pass through the lipid–water interface.</p>\n </div>","PeriodicalId":11291,"journal":{"name":"Drug Development Research","volume":"86 2","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ddr.70070","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

The headway for the management of emerging resistant microbial strains has become a demanding task. Over the years, antimicrobial peptides (AMP), have been recognized and explored for their highly systematized SAR and antibacterial properties. With this background, we have reported a new class of AMPs. These peptides incorporate an unnatural amino acid, with a motivation from cruciferous bioactive phytochemical bisindoles methane derivatives with highly selective antimicrobial action. These peptides may also be considered as linear derivatives of hirsutide isolated from entomopathogenic fungus. The synthesized peptides were tested for their antimicrobial activity against an ESKAPE pathogen panel, where peptide 3 exhibited equipotent MIC and potent synergistic action along with gentamicin against Staphylococcus aureus and Enterococcus clinical isolates. This combination was also able to repotentiate gentamicin against NRS119, a gentamicin-resistant MRSA. Molecular dynamics study and free energy calculations provided insights to membrane disruptive properties of AMP action, which assisted gentamicin pass through the lipid–water interface.

线性抗菌肽,含有二吲哚基甲烷非天然氨基酸,增强庆大霉素对抗耐甲氧西林金黄色葡萄球菌
管理新出现的耐药微生物菌株已成为一项艰巨的任务。多年来,抗菌肽(antimicrobial peptides, AMP)因其高度系统化的SAR和抗菌特性而被人们认识和探索。在此背景下,我们报道了一类新的amp。这些肽含有一种非天然氨基酸,其动力来自十字花科生物活性植物化学双吲哚甲烷衍生物,具有高度选择性的抗菌作用。这些多肽也可以被认为是从昆虫病原真菌中分离出来的多毛肽的线性衍生物。合成的肽对ESKAPE病原菌进行了抗菌活性测试,其中肽3与庆大霉素对金黄色葡萄球菌和肠球菌临床分离株表现出等效MIC和强效协同作用。这种组合也能够重新增强庆大霉素对NRS119(一种耐庆大霉素的MRSA)的作用。分子动力学研究和自由能计算提供了AMP作用的膜破坏特性的见解,这有助于庆大霉素通过脂质-水界面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
2.60%
发文量
104
审稿时长
6-12 weeks
期刊介绍: Drug Development Research focuses on research topics related to the discovery and development of new therapeutic entities. The journal publishes original research articles on medicinal chemistry, pharmacology, biotechnology and biopharmaceuticals, toxicology, and drug delivery, formulation, and pharmacokinetics. The journal welcomes manuscripts on new compounds and technologies in all areas focused on human therapeutics, as well as global management, health care policy, and regulatory issues involving the drug discovery and development process. In addition to full-length articles, Drug Development Research publishes Brief Reports on important and timely new research findings, as well as in-depth review articles. The journal also features periodic special thematic issues devoted to specific compound classes, new technologies, and broad aspects of drug discovery and development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信