Tar spot impacts silage corn yield and forage nutritive value

IF 0.8 Q3 AGRONOMY
Harkirat Kaur, Martin Chilvers, Kimberly Cassida, Maninder Pal Singh
{"title":"Tar spot impacts silage corn yield and forage nutritive value","authors":"Harkirat Kaur,&nbsp;Martin Chilvers,&nbsp;Kimberly Cassida,&nbsp;Maninder Pal Singh","doi":"10.1002/cft2.70031","DOIUrl":null,"url":null,"abstract":"<p>Silage corn (<i>Zea mays</i> L.) in Michigan and the Great Lakes region is prone to an emerging foliar disease called tar spot (caused by <i>Phyllachora maydis</i>). When corn is infected with <i>Phyllochora maydis</i>, stromata develop on the leaves resulting in early senescence and drying. Therefore, to understand the effect of tar spot on forage yield, nutritive value, and predicted milk yield, field trials were conducted at multiple Michigan locations from 2021–2023. Field trials were arranged in randomized complete block design with four replications. Treatments included hybrid resistance (one susceptible and one partially resistant hybrid) and three fungicide treatments using Delaro 325 SC at 8 oz acre<sup>−1</sup> (non-treated, one application at silking [R1], and two applications [one at R1 and second at dough stage]). Results showed that tar spot severity increased over time in silage corn. Fungicide application in susceptible hybrid had the lowest tar spot severity across all hybrids and fungicide treatments. Hybrid disease resistance resulted in 50% reduction of tar spot severity and contributed to a lower yield penalty. Reduction of tar spot severity due to hybrid disease resistance also minimized decline in neutral detergent fiber digestibility and predicted milk yield. Fungicide application reduced tar spot severity but did not affect dry yield and forage nutritive value. Overall, our study shows that tar spot reduces forage yield and nutritive value and requires an integrated approach to disease management.</p>","PeriodicalId":10931,"journal":{"name":"Crop, Forage and Turfgrass Management","volume":"11 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cft2.70031","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop, Forage and Turfgrass Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cft2.70031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Silage corn (Zea mays L.) in Michigan and the Great Lakes region is prone to an emerging foliar disease called tar spot (caused by Phyllachora maydis). When corn is infected with Phyllochora maydis, stromata develop on the leaves resulting in early senescence and drying. Therefore, to understand the effect of tar spot on forage yield, nutritive value, and predicted milk yield, field trials were conducted at multiple Michigan locations from 2021–2023. Field trials were arranged in randomized complete block design with four replications. Treatments included hybrid resistance (one susceptible and one partially resistant hybrid) and three fungicide treatments using Delaro 325 SC at 8 oz acre−1 (non-treated, one application at silking [R1], and two applications [one at R1 and second at dough stage]). Results showed that tar spot severity increased over time in silage corn. Fungicide application in susceptible hybrid had the lowest tar spot severity across all hybrids and fungicide treatments. Hybrid disease resistance resulted in 50% reduction of tar spot severity and contributed to a lower yield penalty. Reduction of tar spot severity due to hybrid disease resistance also minimized decline in neutral detergent fiber digestibility and predicted milk yield. Fungicide application reduced tar spot severity but did not affect dry yield and forage nutritive value. Overall, our study shows that tar spot reduces forage yield and nutritive value and requires an integrated approach to disease management.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Crop, Forage and Turfgrass Management
Crop, Forage and Turfgrass Management Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
1.30
自引率
16.70%
发文量
49
期刊介绍: Crop, Forage & Turfgrass Management is a peer-reviewed, international, electronic journal covering all aspects of applied crop, forage and grazinglands, and turfgrass management. The journal serves the professions related to the management of crops, forages and grazinglands, and turfgrass by publishing research, briefs, reviews, perspectives, and diagnostic and management guides that are beneficial to researchers, practitioners, educators, and industry representatives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信