A Framework to Unify the Relationship Between Numerical Abundance, Biomass, and Environmental DNA

Q1 Agricultural and Biological Sciences
Matthew C. Yates, Taylor M. Wilcox, Shannon Kay, Pedro Peres-Neto, Daniel D. Heath
{"title":"A Framework to Unify the Relationship Between Numerical Abundance, Biomass, and Environmental DNA","authors":"Matthew C. Yates,&nbsp;Taylor M. Wilcox,&nbsp;Shannon Kay,&nbsp;Pedro Peres-Neto,&nbsp;Daniel D. Heath","doi":"10.1002/edn3.70073","DOIUrl":null,"url":null,"abstract":"<p>Does environmental DNA (eDNA) concentration correlate with numerical abundance (<i>N</i>) or biomass in aquatic organisms? We hypothesize that eDNA can be adjusted to simultaneously reflect both. Building on frameworks developed from the Metabolic Theory of Ecology, we derive two equations to adjust eDNA data to simultaneously reflect both <i>N</i> and biomass using population size structure data and allometric scaling coefficients. We also demonstrate that these equations share model parameters, necessitating the joint estimation of regressions between adjusted eDNA, <i>N</i>, and biomass. Furthermore, our framework can be extended to model how other variables (temperature, taxa, diet, trophic level, etc.) might impact relationships between eDNA, <i>N</i>, and biomass in natural ecosystems. We applied our framework to data from two previously published studies correlating eDNA to Brook Trout (<i>Salvelinus fontinalis</i>) <i>N</i> and biomass. In both case studies, point estimates of the scaling coefficient (<i>b</i>) reflected allometric processes (<i>b</i> = 0.51 and 0.37 for Case Study 1 and 2, respectively), with credible intervals indicating that b likely differed from zero (i.e., eDNA scales with <i>N</i>) and one (i.e., eDNA scales with biomass). Directly estimating the value of b improved estimates of <i>N</i> and biomass relative to assuming b equals 0, which particularly affected the capacity to estimate biomass. However, models assuming eDNA production scaled with biomass (i.e., <i>b</i> = 1) were largely similar to estimating <i>b</i>, implying that assuming eDNA scales linearly with biomass might be a sufficient approximation for some systems. Nevertheless, the framework demonstrates that correlating eDNA directly with either <i>N</i> or biomass (as is commonly done in many studies) inherently necessitates an adjustment to infer the other metric if populations exhibit size structure variation. Collectively, we demonstrate that quantitative eDNA data is unlikely to correspond exactly to either population <i>N</i> or biomass but can be adjusted to simultaneously reflect both.</p>","PeriodicalId":52828,"journal":{"name":"Environmental DNA","volume":"7 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/edn3.70073","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental DNA","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/edn3.70073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Does environmental DNA (eDNA) concentration correlate with numerical abundance (N) or biomass in aquatic organisms? We hypothesize that eDNA can be adjusted to simultaneously reflect both. Building on frameworks developed from the Metabolic Theory of Ecology, we derive two equations to adjust eDNA data to simultaneously reflect both N and biomass using population size structure data and allometric scaling coefficients. We also demonstrate that these equations share model parameters, necessitating the joint estimation of regressions between adjusted eDNA, N, and biomass. Furthermore, our framework can be extended to model how other variables (temperature, taxa, diet, trophic level, etc.) might impact relationships between eDNA, N, and biomass in natural ecosystems. We applied our framework to data from two previously published studies correlating eDNA to Brook Trout (Salvelinus fontinalis) N and biomass. In both case studies, point estimates of the scaling coefficient (b) reflected allometric processes (b = 0.51 and 0.37 for Case Study 1 and 2, respectively), with credible intervals indicating that b likely differed from zero (i.e., eDNA scales with N) and one (i.e., eDNA scales with biomass). Directly estimating the value of b improved estimates of N and biomass relative to assuming b equals 0, which particularly affected the capacity to estimate biomass. However, models assuming eDNA production scaled with biomass (i.e., b = 1) were largely similar to estimating b, implying that assuming eDNA scales linearly with biomass might be a sufficient approximation for some systems. Nevertheless, the framework demonstrates that correlating eDNA directly with either N or biomass (as is commonly done in many studies) inherently necessitates an adjustment to infer the other metric if populations exhibit size structure variation. Collectively, we demonstrate that quantitative eDNA data is unlikely to correspond exactly to either population N or biomass but can be adjusted to simultaneously reflect both.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental DNA
Environmental DNA Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
11.00
自引率
0.00%
发文量
99
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信