Francis Rossignol, Foudil Lamari, Grant A. Mitchell
{"title":"Phosphoinositide Metabolism: Biochemistry, Physiology and Genetic Disorders","authors":"Francis Rossignol, Foudil Lamari, Grant A. Mitchell","doi":"10.1002/jimd.70008","DOIUrl":null,"url":null,"abstract":"<p>Phosphatidylinositol, a glycerophospholipid with a <i>myo</i>-inositol head group, can form seven different phosphoinositides (PItds) by phosphorylation at inositol carbons 3, 4 and/or 5. Over 50 kinases and phosphatases participate in PItd metabolism, creating an interconnected PItd network that allows for precise temporal and spatial regulation of PItd levels. We review paradigms of PItd action, including (1) the establishment of subcellular organelle identity by the acquisition of specific PItd signatures, permitting regulation of key processes of cell biology including trafficking (exocytosis, clathrin-dependent and -independent endocytosis, formation and function of membrane contact sites, cytoskeletal remodeling), (2) signaling through phospholipase C cleavage of phosphatidylinositol 4,5-bisphosphate to inositol 1,4,5-trisphosphate and DAG, and (3) roles of PItds in molecular transport at membrane contact sites. To date, variants in 34 genes of PItd metabolism account for at least 41 distinguishable monogenic conditions. Clinical presentations of these disorders produce a broad and often multisystemic spectrum of effects. The nervous system is often involved, and muscular, immunological, skeletal, renal, ophthalmologic and dermatologic features occur in several conditions. Some syndromes involving PItd metabolism can be distinguished clinically, but most diagnoses currently result from broad molecular diagnostic testing performed for the patient's presenting clinical complaint. Genetic disorders of PItd metabolism are a broad, expanding and challenging category of inborn errors. Challenges include improved documentation of the clinical spectra, development of broad biochemical diagnostic methods for these conditions and better understanding of the PItd networks in different cells and subcellular compartments necessary for the development of disease-specific therapies.</p>","PeriodicalId":16281,"journal":{"name":"Journal of Inherited Metabolic Disease","volume":"48 2","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jimd.70008","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inherited Metabolic Disease","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jimd.70008","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Phosphatidylinositol, a glycerophospholipid with a myo-inositol head group, can form seven different phosphoinositides (PItds) by phosphorylation at inositol carbons 3, 4 and/or 5. Over 50 kinases and phosphatases participate in PItd metabolism, creating an interconnected PItd network that allows for precise temporal and spatial regulation of PItd levels. We review paradigms of PItd action, including (1) the establishment of subcellular organelle identity by the acquisition of specific PItd signatures, permitting regulation of key processes of cell biology including trafficking (exocytosis, clathrin-dependent and -independent endocytosis, formation and function of membrane contact sites, cytoskeletal remodeling), (2) signaling through phospholipase C cleavage of phosphatidylinositol 4,5-bisphosphate to inositol 1,4,5-trisphosphate and DAG, and (3) roles of PItds in molecular transport at membrane contact sites. To date, variants in 34 genes of PItd metabolism account for at least 41 distinguishable monogenic conditions. Clinical presentations of these disorders produce a broad and often multisystemic spectrum of effects. The nervous system is often involved, and muscular, immunological, skeletal, renal, ophthalmologic and dermatologic features occur in several conditions. Some syndromes involving PItd metabolism can be distinguished clinically, but most diagnoses currently result from broad molecular diagnostic testing performed for the patient's presenting clinical complaint. Genetic disorders of PItd metabolism are a broad, expanding and challenging category of inborn errors. Challenges include improved documentation of the clinical spectra, development of broad biochemical diagnostic methods for these conditions and better understanding of the PItd networks in different cells and subcellular compartments necessary for the development of disease-specific therapies.
期刊介绍:
The Journal of Inherited Metabolic Disease (JIMD) is the official journal of the Society for the Study of Inborn Errors of Metabolism (SSIEM). By enhancing communication between workers in the field throughout the world, the JIMD aims to improve the management and understanding of inherited metabolic disorders. It publishes results of original research and new or important observations pertaining to any aspect of inherited metabolic disease in humans and higher animals. This includes clinical (medical, dental and veterinary), biochemical, genetic (including cytogenetic, molecular and population genetic), experimental (including cell biological), methodological, theoretical, epidemiological, ethical and counselling aspects. The JIMD also reviews important new developments or controversial issues relating to metabolic disorders and publishes reviews and short reports arising from the Society''s annual symposia. A distinction is made between peer-reviewed scientific material that is selected because of its significance for other professionals in the field and non-peer- reviewed material that aims to be important, controversial, interesting or entertaining (“Extras”).