BCS Critical Temperature on Half-Spaces

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Barbara Roos, Robert Seiringer
{"title":"BCS Critical Temperature on Half-Spaces","authors":"Barbara Roos,&nbsp;Robert Seiringer","doi":"10.1007/s00205-025-02088-x","DOIUrl":null,"url":null,"abstract":"<div><p>We study the BCS critical temperature on half-spaces in dimensions <span>\\(d=1,2,3\\)</span> with Dirichlet or Neumann boundary conditions. We prove that the critical temperature on a half-space is strictly higher than on <span>\\(\\mathbb {R}^d\\)</span>, at least at weak coupling in <span>\\(d=1,2\\)</span> and weak coupling and small chemical potential in <span>\\(d=3\\)</span>. Furthermore, we show that the relative shift in critical temperature vanishes in the weak coupling limit.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"249 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-025-02088-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-025-02088-x","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study the BCS critical temperature on half-spaces in dimensions \(d=1,2,3\) with Dirichlet or Neumann boundary conditions. We prove that the critical temperature on a half-space is strictly higher than on \(\mathbb {R}^d\), at least at weak coupling in \(d=1,2\) and weak coupling and small chemical potential in \(d=3\). Furthermore, we show that the relative shift in critical temperature vanishes in the weak coupling limit.

我们研究了在(d=1,2,3)维度的半空间上的BCS临界温度,它具有迪里希特或诺伊曼边界条件。我们证明,半空间上的临界温度严格高于(\mathbb {R}^d\)上的临界温度,至少在(d=1,2)的弱耦合以及(d=3)的弱耦合和小化学势下是如此。此外,我们还证明临界温度的相对移动在弱耦合极限下消失了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信