Interaction of tautomers of doxorubicin with guanine-cytosine base pair: a density functional theory study

IF 2.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Angarag Kashyap, Kripangkar Choudhury, Pradyumna Mazumdar, Diganta Choudhury
{"title":"Interaction of tautomers of doxorubicin with guanine-cytosine base pair: a density functional theory study","authors":"Angarag Kashyap,&nbsp;Kripangkar Choudhury,&nbsp;Pradyumna Mazumdar,&nbsp;Diganta Choudhury","doi":"10.1007/s00894-025-06331-w","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>Anthracycline anticancer antibiotics from <i>Streptomyces peucetius</i> show high affinity for nucleobases. This study uses quantum mechanical density functional theory (DFT) to investigate interactions between doxorubicin (DOX) tautomers and the guanine-cytosine (GC) base pair. Intermolecular distances and interaction energies reveal structural relationships and stabilization. Interaction energy studies show that DOX-GC has greater binding affinity and greater stability in the aqueous phase as compared to that in gaseous phase. Interestingly, the tautomer which show greater affinity for GC in the gas phase is different from the one in the aqueous phase. Reduced density gradient (RDG) scatter plots and quantum theory of atoms in molecules (QTAIM) confirm the presence of hydrogen bonds and its strength. Natural bond orbital (NBO) analysis elucidates donor–acceptor orbital interactions. These findings provide an understanding of the intermolecular interactions between DOX tautomers and the GC base pair, which is likely to provide insight into the molecular basis for DOX’s anticancer activity and therapeutic efficacy.</p><h3>Methods</h3><p>DFT calculations were performed using the B3LYP functional with a 6-31G(d,p) basis set in the Gaussian 09 package, including solvent effects through the integral equation formalism polarizable continuum model (IEF-PCM). Topological analysis and quantum theory of atoms in molecules (QTAIM) studies were conducted using the Multiwfn program, while non-covalent interactions were analysed using visual molecular dynamics (VMD) software.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"31 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-025-06331-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Context

Anthracycline anticancer antibiotics from Streptomyces peucetius show high affinity for nucleobases. This study uses quantum mechanical density functional theory (DFT) to investigate interactions between doxorubicin (DOX) tautomers and the guanine-cytosine (GC) base pair. Intermolecular distances and interaction energies reveal structural relationships and stabilization. Interaction energy studies show that DOX-GC has greater binding affinity and greater stability in the aqueous phase as compared to that in gaseous phase. Interestingly, the tautomer which show greater affinity for GC in the gas phase is different from the one in the aqueous phase. Reduced density gradient (RDG) scatter plots and quantum theory of atoms in molecules (QTAIM) confirm the presence of hydrogen bonds and its strength. Natural bond orbital (NBO) analysis elucidates donor–acceptor orbital interactions. These findings provide an understanding of the intermolecular interactions between DOX tautomers and the GC base pair, which is likely to provide insight into the molecular basis for DOX’s anticancer activity and therapeutic efficacy.

Methods

DFT calculations were performed using the B3LYP functional with a 6-31G(d,p) basis set in the Gaussian 09 package, including solvent effects through the integral equation formalism polarizable continuum model (IEF-PCM). Topological analysis and quantum theory of atoms in molecules (QTAIM) studies were conducted using the Multiwfn program, while non-covalent interactions were analysed using visual molecular dynamics (VMD) software.

Graphical Abstract

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Modeling
Journal of Molecular Modeling 化学-化学综合
CiteScore
3.50
自引率
4.50%
发文量
362
审稿时长
2.9 months
期刊介绍: The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling. Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry. Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信