LeScore: a scoring function incorporating hydrogen bonding penalty for protein–ligand docking

IF 2.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Aowei Xie, Guangjian Zhao, Huicong Liang, Ting Gao, Xinru Gao, Ning Hou, Fengjiao Wei, Jiajie Li, Hongtao Zhao, Ximing Xu
{"title":"LeScore: a scoring function incorporating hydrogen bonding penalty for protein–ligand docking","authors":"Aowei Xie,&nbsp;Guangjian Zhao,&nbsp;Huicong Liang,&nbsp;Ting Gao,&nbsp;Xinru Gao,&nbsp;Ning Hou,&nbsp;Fengjiao Wei,&nbsp;Jiajie Li,&nbsp;Hongtao Zhao,&nbsp;Ximing Xu","doi":"10.1007/s00894-025-06328-5","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>Molecular docking is vital for structure-based virtual screening and heavily depends on accurate and robust scoring functions. Scoring functions often inadequately account for the breakage of solvent hydrogen bonds, hindering the accuracy of predicting binding energy. Here, we introduce LeScore, a novel scoring function that specifically incorporates the hydrogen bonding penalty (HBP) in an aqueous environment, aiming to penalize unfavorable polar interactions when hydrogen bonds with water are broken but the energy loss is not fully compensated by newly formed protein–ligand interactions. LeScore was optimized for descriptor combinations and subsequently validated using a testing data set, achieving a Pearson correlation coefficient (rp) of 0.53 in the training set and 0.52 in the testing set. To evaluate its screening capability, a subset of the Directory of Useful Decoys: Enhanced (DUD-E) was used. And LeScore achieved an AUC of 0.71 for specific targets, outperforming models without HBP and enhancing the ranking and classification of active compounds. Overall, LeScore provides a robust tool for improving virtual screening, especially in cases where hydrogen bonding is crucial for ligand binding.</p><h3>Method</h3><p>LeScore is formulated as a linear combination of descriptors, including van der Waals interactions, hydrogen bond energy, ligand strain energy, and newly integrated HBP. The function was optimized using multiple linear regression (MLR) on the PDBbind 2019 dataset. Evaluation metrics, such as Pearson and Spearman correlation coefficients were utilized to assess the performance of 12 descriptor combinations. Additionally, the study employed datasets from the DUD-E to evaluate LeScore’s ability to distinguish active ligands from decoys across multiple target proteins.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"31 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-025-06328-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Context

Molecular docking is vital for structure-based virtual screening and heavily depends on accurate and robust scoring functions. Scoring functions often inadequately account for the breakage of solvent hydrogen bonds, hindering the accuracy of predicting binding energy. Here, we introduce LeScore, a novel scoring function that specifically incorporates the hydrogen bonding penalty (HBP) in an aqueous environment, aiming to penalize unfavorable polar interactions when hydrogen bonds with water are broken but the energy loss is not fully compensated by newly formed protein–ligand interactions. LeScore was optimized for descriptor combinations and subsequently validated using a testing data set, achieving a Pearson correlation coefficient (rp) of 0.53 in the training set and 0.52 in the testing set. To evaluate its screening capability, a subset of the Directory of Useful Decoys: Enhanced (DUD-E) was used. And LeScore achieved an AUC of 0.71 for specific targets, outperforming models without HBP and enhancing the ranking and classification of active compounds. Overall, LeScore provides a robust tool for improving virtual screening, especially in cases where hydrogen bonding is crucial for ligand binding.

Method

LeScore is formulated as a linear combination of descriptors, including van der Waals interactions, hydrogen bond energy, ligand strain energy, and newly integrated HBP. The function was optimized using multiple linear regression (MLR) on the PDBbind 2019 dataset. Evaluation metrics, such as Pearson and Spearman correlation coefficients were utilized to assess the performance of 12 descriptor combinations. Additionally, the study employed datasets from the DUD-E to evaluate LeScore’s ability to distinguish active ligands from decoys across multiple target proteins.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Modeling
Journal of Molecular Modeling 化学-化学综合
CiteScore
3.50
自引率
4.50%
发文量
362
审稿时长
2.9 months
期刊介绍: The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling. Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry. Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信