{"title":"Numerical solutions of one-dimensional Gelfand equation with fractional Laplacian","authors":"Lei Liu, Yufeng Xu","doi":"10.1007/s10910-024-01689-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we discuss an efficient numerical method to obtain all solutions of fractional Gelfand equation with Dirichlet boundary condition. More precisely, we derive a good initial value motivated by the bifurcation curve of fractional Gelfand equation. It is obvious to see that the number of solutions depends on the value of parameter in fractional Gelfand equation. By collocation technique and finite difference method, numerical solutions can be found very quickly based on Newton iteration method with the aid of such initial guess. Numerical simulation for one-dimensional fractional Gelfand equation are provided, which demonstrates the accuracy and easy-to-implement of our algorithm.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"63 3","pages":"651 - 665"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10910-024-01689-3","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we discuss an efficient numerical method to obtain all solutions of fractional Gelfand equation with Dirichlet boundary condition. More precisely, we derive a good initial value motivated by the bifurcation curve of fractional Gelfand equation. It is obvious to see that the number of solutions depends on the value of parameter in fractional Gelfand equation. By collocation technique and finite difference method, numerical solutions can be found very quickly based on Newton iteration method with the aid of such initial guess. Numerical simulation for one-dimensional fractional Gelfand equation are provided, which demonstrates the accuracy and easy-to-implement of our algorithm.
期刊介绍:
The Journal of Mathematical Chemistry (JOMC) publishes original, chemically important mathematical results which use non-routine mathematical methodologies often unfamiliar to the usual audience of mainstream experimental and theoretical chemistry journals. Furthermore JOMC publishes papers on novel applications of more familiar mathematical techniques and analyses of chemical problems which indicate the need for new mathematical approaches.
Mathematical chemistry is a truly interdisciplinary subject, a field of rapidly growing importance. As chemistry becomes more and more amenable to mathematically rigorous study, it is likely that chemistry will also become an alert and demanding consumer of new mathematical results. The level of complexity of chemical problems is often very high, and modeling molecular behaviour and chemical reactions does require new mathematical approaches. Chemistry is witnessing an important shift in emphasis: simplistic models are no longer satisfactory, and more detailed mathematical understanding of complex chemical properties and phenomena are required. From theoretical chemistry and quantum chemistry to applied fields such as molecular modeling, drug design, molecular engineering, and the development of supramolecular structures, mathematical chemistry is an important discipline providing both explanations and predictions. JOMC has an important role in advancing chemistry to an era of detailed understanding of molecules and reactions.