Molecular dynamics simulation of the mechanical properties of multi-walled nanotube comprising X-graphene and Y-graphene with different stacking orders
{"title":"Molecular dynamics simulation of the mechanical properties of multi-walled nanotube comprising X-graphene and Y-graphene with different stacking orders","authors":"Haichao Zhao, Haoran Wang","doi":"10.1007/s10910-024-01698-2","DOIUrl":null,"url":null,"abstract":"<div><p>This study employs Molecular Dynamics (MD) simulations to investigate the mechanical properties of single-layer X-graphene and Y-graphene in both armchair and zigzag configurations, as well as multi-walled nanotubes with varying stacking orders. The nanotubes are constructed using various combinations of armchair and zigzag configurations for the X-graphene and Y-graphene layers, arranged in distinct stacking patterns. Analysis of fracture and stress distribution in the X-graphene and Y-graphene nanotubes indicates a soft mechanical behavior. Additionally, stress–strain curve analysis shows that, within the initial elastic range, the curves coincide, suggesting that nanotube length does not significantly affect behavior in this region. The ultimate stress and strain of the X-graphene and Y-graphene nanotubes decrease with increasing length, while the toughness also diminishes as the length of the nanotubes increases. Notably, for double-walled nanotubes with both layers oriented in the zigzag configuration, the stress–strain response is slightly higher compared to other configurations.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"63 3","pages":"829 - 851"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10910-024-01698-2","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study employs Molecular Dynamics (MD) simulations to investigate the mechanical properties of single-layer X-graphene and Y-graphene in both armchair and zigzag configurations, as well as multi-walled nanotubes with varying stacking orders. The nanotubes are constructed using various combinations of armchair and zigzag configurations for the X-graphene and Y-graphene layers, arranged in distinct stacking patterns. Analysis of fracture and stress distribution in the X-graphene and Y-graphene nanotubes indicates a soft mechanical behavior. Additionally, stress–strain curve analysis shows that, within the initial elastic range, the curves coincide, suggesting that nanotube length does not significantly affect behavior in this region. The ultimate stress and strain of the X-graphene and Y-graphene nanotubes decrease with increasing length, while the toughness also diminishes as the length of the nanotubes increases. Notably, for double-walled nanotubes with both layers oriented in the zigzag configuration, the stress–strain response is slightly higher compared to other configurations.
期刊介绍:
The Journal of Mathematical Chemistry (JOMC) publishes original, chemically important mathematical results which use non-routine mathematical methodologies often unfamiliar to the usual audience of mainstream experimental and theoretical chemistry journals. Furthermore JOMC publishes papers on novel applications of more familiar mathematical techniques and analyses of chemical problems which indicate the need for new mathematical approaches.
Mathematical chemistry is a truly interdisciplinary subject, a field of rapidly growing importance. As chemistry becomes more and more amenable to mathematically rigorous study, it is likely that chemistry will also become an alert and demanding consumer of new mathematical results. The level of complexity of chemical problems is often very high, and modeling molecular behaviour and chemical reactions does require new mathematical approaches. Chemistry is witnessing an important shift in emphasis: simplistic models are no longer satisfactory, and more detailed mathematical understanding of complex chemical properties and phenomena are required. From theoretical chemistry and quantum chemistry to applied fields such as molecular modeling, drug design, molecular engineering, and the development of supramolecular structures, mathematical chemistry is an important discipline providing both explanations and predictions. JOMC has an important role in advancing chemistry to an era of detailed understanding of molecules and reactions.