Differential cross sections for simultaneous capture of both electrons by alpha particles from helium targets are computed. Employed are several quantum-mechanical distorted wave four-body methods of first- and second-orders. The main focus is on the cross section sensitivity as a function of different perturbation interactions and scattering states. Two aspects are considered. One is for theories with the same perturbation interactions and different scattering states. The other is for theories with the same scattering states and different perturbation interactions. In this context, the interference effect on two levels is examined. One compares the yields from the internuclear potential and the interactions between nuclei and two electrons. The other contrasts the contributions from the channel states with and without the distorted waves generated by the relative motions of nuclei. Depending on the employed theory, differential cross sections can be strongly or mildly influenced by the variability in all the mentioned frameworks. The salient illustrations are reported at intermediate energies 180-900 keV for which the experimental data are available. It is found that the second-order theories are in much better agreement with the measured cross sections than the first-order theories.