Ashis Kumar Mandal, Md Nadim, Chanchal K. Roy, Banani Roy, Kevin A. Schneider
{"title":"Quantum software engineering and potential of quantum computing in software engineering research: a review","authors":"Ashis Kumar Mandal, Md Nadim, Chanchal K. Roy, Banani Roy, Kevin A. Schneider","doi":"10.1007/s10515-025-00493-w","DOIUrl":null,"url":null,"abstract":"<div><p>Research in software engineering is essential for improving software development practices, leading to reliable and secure software. Leveraging the principles of quantum physics, quantum computing has emerged as a new computational paradigm that offers significant advantages over classical computing. As quantum computing progresses rapidly, its potential applications across various fields are becoming apparent. In software engineering, many tasks involve complex computations where quantum computers can greatly speed up the development process, leading to faster and more efficient solutions. With the growing use of quantum-based applications in different fields, Quantum Software Engineering (QSE) has emerged as a discipline focused on designing, developing, and optimizing quantum software for diverse applications. This paper aims to review the role of quantum computing in software engineering research and the latest developments in QSE. To our knowledge, this is the first comprehensive review on this topic. We begin by introducing quantum computing, exploring its fundamental concepts, and discussing its potential applications in software engineering. We also examine various QSE techniques that expedite software development. Finally, we discuss the opportunities and challenges in quantum-driven software engineering and QSE. Our study reveals that quantum machine learning and quantum optimization have substantial potential to address classical software engineering tasks, though this area is still limited. Current QSE tools and techniques lack robustness and maturity, indicating a need for more focus. One of the main challenges is that quantum computing has yet to reach its full potential.</p></div>","PeriodicalId":55414,"journal":{"name":"Automated Software Engineering","volume":"32 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automated Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10515-025-00493-w","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Research in software engineering is essential for improving software development practices, leading to reliable and secure software. Leveraging the principles of quantum physics, quantum computing has emerged as a new computational paradigm that offers significant advantages over classical computing. As quantum computing progresses rapidly, its potential applications across various fields are becoming apparent. In software engineering, many tasks involve complex computations where quantum computers can greatly speed up the development process, leading to faster and more efficient solutions. With the growing use of quantum-based applications in different fields, Quantum Software Engineering (QSE) has emerged as a discipline focused on designing, developing, and optimizing quantum software for diverse applications. This paper aims to review the role of quantum computing in software engineering research and the latest developments in QSE. To our knowledge, this is the first comprehensive review on this topic. We begin by introducing quantum computing, exploring its fundamental concepts, and discussing its potential applications in software engineering. We also examine various QSE techniques that expedite software development. Finally, we discuss the opportunities and challenges in quantum-driven software engineering and QSE. Our study reveals that quantum machine learning and quantum optimization have substantial potential to address classical software engineering tasks, though this area is still limited. Current QSE tools and techniques lack robustness and maturity, indicating a need for more focus. One of the main challenges is that quantum computing has yet to reach its full potential.
期刊介绍:
This journal details research, tutorial papers, survey and accounts of significant industrial experience in the foundations, techniques, tools and applications of automated software engineering technology. This includes the study of techniques for constructing, understanding, adapting, and modeling software artifacts and processes.
Coverage in Automated Software Engineering examines both automatic systems and collaborative systems as well as computational models of human software engineering activities. In addition, it presents knowledge representations and artificial intelligence techniques applicable to automated software engineering, and formal techniques that support or provide theoretical foundations. The journal also includes reviews of books, software, conferences and workshops.