Magnetohydrodynamic conjugate mixed convection, Joule Heating, and entropy generation through a ferrofluid filled T-shaped open miniature chamber with a Heat-Generating circular rod

IF 1.9 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
Md Tanbirul Islam Rupam , Nahid Hasan , Md. Sheikh Rasel , Sumon Saha
{"title":"Magnetohydrodynamic conjugate mixed convection, Joule Heating, and entropy generation through a ferrofluid filled T-shaped open miniature chamber with a Heat-Generating circular rod","authors":"Md Tanbirul Islam Rupam ,&nbsp;Nahid Hasan ,&nbsp;Md. Sheikh Rasel ,&nbsp;Sumon Saha","doi":"10.1016/j.anucene.2025.111294","DOIUrl":null,"url":null,"abstract":"<div><div>The present study computationally investigates magnetohydrodynamic (MHD) mixed convective fluid circulation and entropy generation in a <em>T</em>-shaped open chamber containing a heat-generating and conducting cylinder. Ferrofluid is circulated through the enclosure by entering at the bottom and leaving from the top of both side openings. This study utilizes the finite element scheme to unravel the leading thermal energy and Navier-Stokes equations, employing suitable auxiliary conditions. This research aims to analyze the effects of governing non-dimensional governing and geometric parameters and explore the best thermo-fluid performance inside the enclosure. The geometrical and controlling parameters are the cylinder location in the vertical direction (<em>δ</em> = 0.6, 0.7, 0.8), Reynolds number (31.62 ≤ <em>Re</em> ≤ 316.23), Grashof number (10<sup>3</sup> ≤ <em>Gr</em> ≤ 10<sup>5</sup>), Richardson number (0.1 ≤ <em>Ri</em> ≤ 10), Stuart number (0 ≤ <em>N</em> ≤ 3.16), Hartmann number (0 ≤ <em>Ha</em> ≤ 17.78), and Joule heating parameter (0 ≤ <em>J</em> ≤ 4.57 × 10<sup>−8</sup>). The outcomes of this investigation are assessed using numerical computations of the overall entropy generation within the enclosure, average Nusselt number along the edge of the heated cylinder, mean temperature of the solid cylinder, and thermal performance criterion for six distinct cases. Furthermore, a visual depiction of the fluid circulation and thermal fields is presented. Upon thorough examination, it becomes evident that elevated Reynolds and Grashof numbers result in increased heat transport and reduced entropy production. Moreover, the optimal vertical location of the cylinder is identified at 0.6 times the chamber height. The maximum Nusselt number is achieved in Case 1 (at fixed <em>N</em> and <em>Gr</em>), where a 26.78 % improvement can be obtained by adjusting the parameter values at <em>δ</em> = 0.6. The inclusive discoveries of the current study grasp the noteworthy potential for apprising the design of miscellaneous thermal systems, together with solar thermal collectors, nuclear reactor cooling, electronic cooling, etc.</div></div>","PeriodicalId":8006,"journal":{"name":"Annals of Nuclear Energy","volume":"216 ","pages":"Article 111294"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306454925001112","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The present study computationally investigates magnetohydrodynamic (MHD) mixed convective fluid circulation and entropy generation in a T-shaped open chamber containing a heat-generating and conducting cylinder. Ferrofluid is circulated through the enclosure by entering at the bottom and leaving from the top of both side openings. This study utilizes the finite element scheme to unravel the leading thermal energy and Navier-Stokes equations, employing suitable auxiliary conditions. This research aims to analyze the effects of governing non-dimensional governing and geometric parameters and explore the best thermo-fluid performance inside the enclosure. The geometrical and controlling parameters are the cylinder location in the vertical direction (δ = 0.6, 0.7, 0.8), Reynolds number (31.62 ≤ Re ≤ 316.23), Grashof number (103 ≤ Gr ≤ 105), Richardson number (0.1 ≤ Ri ≤ 10), Stuart number (0 ≤ N ≤ 3.16), Hartmann number (0 ≤ Ha ≤ 17.78), and Joule heating parameter (0 ≤ J ≤ 4.57 × 10−8). The outcomes of this investigation are assessed using numerical computations of the overall entropy generation within the enclosure, average Nusselt number along the edge of the heated cylinder, mean temperature of the solid cylinder, and thermal performance criterion for six distinct cases. Furthermore, a visual depiction of the fluid circulation and thermal fields is presented. Upon thorough examination, it becomes evident that elevated Reynolds and Grashof numbers result in increased heat transport and reduced entropy production. Moreover, the optimal vertical location of the cylinder is identified at 0.6 times the chamber height. The maximum Nusselt number is achieved in Case 1 (at fixed N and Gr), where a 26.78 % improvement can be obtained by adjusting the parameter values at δ = 0.6. The inclusive discoveries of the current study grasp the noteworthy potential for apprising the design of miscellaneous thermal systems, together with solar thermal collectors, nuclear reactor cooling, electronic cooling, etc.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Nuclear Energy
Annals of Nuclear Energy 工程技术-核科学技术
CiteScore
4.30
自引率
21.10%
发文量
632
审稿时长
7.3 months
期刊介绍: Annals of Nuclear Energy provides an international medium for the communication of original research, ideas and developments in all areas of the field of nuclear energy science and technology. Its scope embraces nuclear fuel reserves, fuel cycles and cost, materials, processing, system and component technology (fission only), design and optimization, direct conversion of nuclear energy sources, environmental control, reactor physics, heat transfer and fluid dynamics, structural analysis, fuel management, future developments, nuclear fuel and safety, nuclear aerosol, neutron physics, computer technology (both software and hardware), risk assessment, radioactive waste disposal and reactor thermal hydraulics. Papers submitted to Annals need to demonstrate a clear link to nuclear power generation/nuclear engineering. Papers which deal with pure nuclear physics, pure health physics, imaging, or attenuation and shielding properties of concretes and various geological materials are not within the scope of the journal. Also, papers that deal with policy or economics are not within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信