{"title":"Factoring sparse polynomials fast","authors":"Alexander Demin , Joris van der Hoeven","doi":"10.1016/j.jco.2025.101934","DOIUrl":null,"url":null,"abstract":"<div><div>Consider a sparse polynomial in several variables given explicitly as a sum of non-zero terms with coefficients in an effective field. In this paper, we present several algorithms for factoring such polynomials and related tasks (such as gcd computation, square-free factorization, content-free factorization, and root extraction). Our methods are all based on sparse interpolation, but follow two main lines of attack: iteration on the number of variables and more direct reductions to the univariate or bivariate case. We present detailed probabilistic complexity bounds in terms of the complexity of sparse interpolation and evaluation.</div></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"88 ","pages":"Article 101934"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X25000123","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Consider a sparse polynomial in several variables given explicitly as a sum of non-zero terms with coefficients in an effective field. In this paper, we present several algorithms for factoring such polynomials and related tasks (such as gcd computation, square-free factorization, content-free factorization, and root extraction). Our methods are all based on sparse interpolation, but follow two main lines of attack: iteration on the number of variables and more direct reductions to the univariate or bivariate case. We present detailed probabilistic complexity bounds in terms of the complexity of sparse interpolation and evaluation.
期刊介绍:
The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited.
Areas Include:
• Approximation theory
• Biomedical computing
• Compressed computing and sensing
• Computational finance
• Computational number theory
• Computational stochastics
• Control theory
• Cryptography
• Design of experiments
• Differential equations
• Discrete problems
• Distributed and parallel computation
• High and infinite-dimensional problems
• Information-based complexity
• Inverse and ill-posed problems
• Machine learning
• Markov chain Monte Carlo
• Monte Carlo and quasi-Monte Carlo
• Multivariate integration and approximation
• Noisy data
• Nonlinear and algebraic equations
• Numerical analysis
• Operator equations
• Optimization
• Quantum computing
• Scientific computation
• Tractability of multivariate problems
• Vision and image understanding.